\mp@subsup{\operatorname{lim}}{x->a}{a}\frac{f(x)}{g(x)}-\mp@subsup{\operatorname{lim}}{x->a}{g}\frac{f(x)}{\mp@subsup{g}{}{\prime}(x)}\mp@subsup{\operatorname{lim}}{x->a}{a}\frac{f(x)}{g(x)}-\mp@subsup{\operatorname{lim}}{x->a}{g}\frac{f(x)}{\mp@subsup{g}{}{\prime}(x)}
provided that the latter limit exists.

Power Series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

Power Series

Consider a series of functions instead of constants.
Power Series in $\mathrm{x} \quad \sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \quad a_{0}=a_{0} x^{0}$
EX 1 When does this power series converge, ie., for what x-values?

$$
\sum_{n=0}^{\infty} a x^{n} \quad\left\{\begin{array}{l}
a \in \mathfrak{R} \\
a \neq 0
\end{array}\right\}
$$

Power Series

Consider a series of functions instead of constants.
Power Series in $\mathrm{x} \quad \sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \quad a_{0}=a_{0} x^{0}$
EX 1 When does this power series converge, i.e., for what x-values?

$$
\sum_{n=0}^{\infty} a x^{n} \quad\left\{\begin{array}{c}
a \in \mathfrak{R} \\
a \neq 0
\end{array}\right\}
$$

Theorem

The convergence set for a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ is always an interval
of one of these three types.

1) The single point at $x=0$.
2) An interval, $(-R, R),[-R, R],[-R, R)$, or $(-R, R]$
3) $(-\infty, \infty)$

The radius of convergence is $0, R$, or ∞, respectively.
EX 2 Find the convergence set for $1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}+\ldots$

EX 3 Find the convergence set for $1+x+\frac{x^{2}}{\sqrt{2}}+\frac{x^{3}}{\sqrt{3}}+\frac{x^{4}}{\sqrt{4}}+\ldots$.

Power Series in $(x-c)$

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\ldots
$$

Convergence set:

1) The single point at $x=c$
2) An interval, ($c-R, c+R$) (may include endpoints)
3) $(-\infty, \infty)$

EX 4 Find the convergence set for $\frac{x-3}{2}+\frac{(x-3)^{2}}{2^{2}}+\frac{(x-3)^{3}}{2^{3}}+\ldots$.

