

In an Alternating Series, every other term has the opposite sign.

$$
a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\ldots
$$

AST (Alternating Series Test)

Let $a_{1}-a_{2}+a_{3}-a_{4}+\ldots$ be an alternating series such that
$a_{n}>a_{n+1}>0$, then the series converges.
The error made by estimating the sum, S_{n} is less than or equal to a_{n+1}, i.e. $E=\left|S-S_{n}\right| \leq a_{n+1}$.

EX 1 Does an Alternating Harmonic Series converge or diverge?

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}
$$

EX 2 Does this series diverge or converge? What is the error estimate made when approximating the sum using S_{6} ?

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{n^{2}+1}
$$

Absolute Convergence

If $\sum\left|u_{n}\right|$ converges, then $\sum u_{n}$ converges.

EX 3 Does $2+\frac{2}{2^{3}}+\frac{2}{3^{3}}-\frac{2}{4^{3}}+\frac{2}{5^{3}}+\frac{2}{6^{3}}+\frac{2}{7^{3}}-\frac{2}{8^{3}}+\ldots$ converge or diverge?

Absolute Ratio Test

Let $\sum a_{n}$ be a series of nonzero terms and suppose $\lim _{n \rightarrow \infty} \frac{\left|u_{n+1}\right|}{\left|u_{n}\right|}=\rho$
i) if $\rho<1$, the series converges absolutely.
ii) if $\rho>1$, the series diverges.
iii) if $\rho=1$, then the test is inconclusive.

EX 4 Show $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{e^{n}}$ converges absolutely.

Conditional Convergence

$\sum u_{n}$ is conditionally convergent if $\sum u_{n}$ converges but $\sum\left|u_{n}\right|$ does not.

EX 5 Classify as absolutely convergent, conditionally convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+1}+\sqrt{n}}
$$

Rearrangement Theorem

The terms of an absolutely convergent series can be rearranged
without affecting either the convergence or the sum of the series

