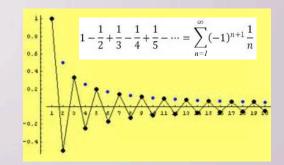


Alternating Series, Absolute Convergence and Conditional Convergence



In an Alternating Series, every other term has the opposite sign.

 $a_1 - a_2 + a_3 - a_4 + a_5 - \dots$ (a; >D)

AST (Alternating Series Test)

Ø.

Let $a_1 - a_2 + a_3 - a_4 + ...$ be an alternating series such that $a_n > a_{n+1} > 0$, then the series converges. ((=) if $a_n = 0$, then The error made by estimating the sum, S_n is less than or equal to a_{n+1} , i.e. $E = |S - S_n| \le a_{n+1}$.

EX 1 Does an Alternating Harmonic Series converge or diverge?

EX 2 Does this series diverge or converge? What is the error estimate made when approximating the sum using S_6 ?

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{n^2+1} \qquad \text{(this is alternating series)}$$

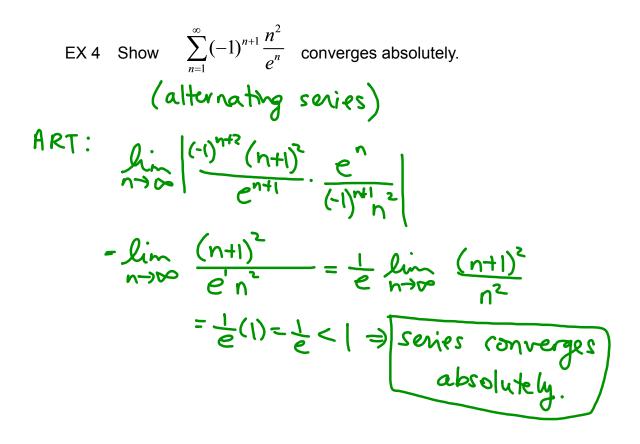
Use AST:
$$\lim_{n \to \infty} \frac{n}{n^2 + 1} = 0 \Rightarrow by AST, thisSeries converges. $E_6 = |S - S_6| \le a_7 = \frac{7}{7^2 + 1} = \frac{7}{50} = \frac{14}{100} = 0.14$$$

Absolute Convergence
If
$$\sum |u_n|$$
 converges, then $\sum u_n$ converges.
EX 3 Does $2 + \frac{2}{2^3} + \frac{2}{3^3} - \frac{2}{4^3} + \frac{2}{5^3} + \frac{2}{6^3} + \frac{2}{7^3} - \frac{2}{8^3} + \dots$ (not atternating series)
 $\sum_{n=1}^{\infty} |Q_n| = \sum_{n=1}^{\infty} \frac{2}{n^3}$ proves $p=371$
 \Rightarrow convergence
(absolute convergence)

Absolute Ratio Test

Let $\sum a_n$ be a series of nonzero terms and suppose $\lim_{n \to \infty} \frac{|u_{n+1}|}{|u_n|} = \rho$.

- *i*) if $\rho < 1$, the series converges absolutely.
- *ii)* if $\rho > 1$, the series diverges.
- *iii)* if $\rho = 1$, then the test is inconclusive.



Conditional Convergence

 $\sum u_n$ is conditionally convergent if $\sum u_n$ converges but $\sum |u_n|$ does not. Note: if its an all-positive series, then convergine EX 5 Classify as absolutely convergent, conditionally convergent or divergent. means absolute $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+1}}$ convergence. check for absolute convergence first: $\sum_{n=1}^{\infty} \frac{1}{(n+1)+\sqrt{n}} \quad \text{use LCT}, \quad b_n = \frac{1}{\sqrt{n}} = \frac{1}{n^{1/2}}$ Eb, p-sories p=1/2<1 → Ebn diverges lim an = lim 1 noo be more line + 1 $=\lim_{h \to \infty} \frac{\sqrt{h}}{\sqrt{h+1} + \sqrt{h}} = \lim_{h \to \infty} \frac{\sqrt{h}}{\sqrt{h} + \sqrt{h}} = \lim_{h \to \infty} \frac{\sqrt{h}}{\sqrt{h}}$ $\approx 1 < \infty$ ⇒ <u>E</u> <u>I</u> diverges → this series is not absolutely convergent S(-1)" still need to check for cond. convergence use AST: $l_{n+1} = 0$ ⇒ by AST, this series converges conditionally

Rearrangement Theorem

The terms of an absolutely convergent series can be rearranged without affecting either the convergence or the sum of the series.

(The terms of a conditionally convergent series or a divergent series <u>Cannot</u> be rearranged w/out a fifecting the sum.)