

Positive Series: Other Tests

Compare terms of $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$

Check the limit $\lim_{n \to \infty} \frac{a_n}{b_n} = L$

Check the ratio

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho$$

Two types of series
$$\lim_{n \to \infty} an^n$$
 converges if $|r|<1$.
p-series: $\sum_{n=1}^{\infty} \frac{1}{n^n}$ converges if $p>1$.
Ordinary Comparison Test (*DCT*)
If $\theta \le a_n \le b_n$ for every $n \ge N$
(θ) If $\sum_{n=1}^{\infty} a_n$ diverges, so does $\sum_{n=1}^{\infty} a_n$.
(θ) If $\sum_{n=1}^{\infty} a_n$ diverges, so does $\sum_{n=1}^{\infty} a_n$.
(θ) If $\sum_{n=1}^{\infty} a_n$ diverges, so does $\sum_{n=1}^{\infty} a_n$.
EX 1 Does $\sum_{i=1}^{\infty} \frac{3n+4}{-2n-5}$ converge or diverge?
(funck: *P*-services? no
guen. services? no
number $2i_n \frac{3n+4}{2n-2n-5} = 0 \Rightarrow I$ know nothing!)
note: "dueled your mathematical relations"
as n gets large the behavior of this serves
is $1_{1k_n} \sum_{n=1}^{\infty} \frac{3n+4}{4n^2-2n-5} = 0 \Rightarrow I$ know nothing!
Use OCT:
 $\sum_{n=1}^{\infty} \frac{3n+4}{4n^2-2n-5} = 3n+4 \Rightarrow 3n n=1/2/3,...$
 $also $4n^2-2n-5 \le 4n^2$
 $\Rightarrow \frac{1}{4n^2-2n-5} > \frac{1}{4n^2}$
 $\Rightarrow \frac{1}{4n^2-2n-5} > \frac{1}{4n^2}$
 $\Rightarrow \frac{3n+4}{4n^2-2n-5} > \frac{3n}{4n^2}$
 $\Rightarrow \frac{3n+4}{4n^2-2n-5} > \frac{3n}{4n^2}$$

(this is among most frequently Limit Comparison Test (LCT) Assume $a_n \ge 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$. If $0 < L < \infty$, then $\sum a_n$ and $\sum b_n$ converge or diverge together. If L = 0 and $\sum b_n$ converges, then $\sum a_n$ converges. Pf let ε= ½. By defn of limits. we know lim Gn = L means that there exists an N such that when n2N then $\left|\frac{g_n}{b_n}-L\right| < \varepsilon = \frac{L}{2}$ \rightarrow - とく や-しくも $\frac{L}{2} < \frac{a_n}{b_n} < \frac{3L}{2} \qquad \begin{pmatrix} assumma}{b_n > 0 \end{pmatrix}$ $\frac{L}{2}(b_n) < a_n < \frac{3L}{2}(b_n)$ =) $\sum_{n=1}^{\infty} \frac{L}{2}(b_n) < \sum_{n=1}^{\infty} q_n < \sum_{n=1}^{\infty} \frac{3L}{2}(b_n)$ by OCT, if Eb, converges, = 3L Eb, then Ean also converges. And if Ean diverges, then Ebn diverges. EX 2 Does this series converge or diverge?

 $\frac{1}{1^2+1} + \frac{2}{2^2+1} + \frac{3}{3^2+1} + \dots = \sum_{n=1}^{\infty} \frac{n}{n^3+1}$ n=1 n=2 n=3 $\left(\begin{array}{ccc} quick: n^{\frac{1}{2}} & \text{ferm} & \lim_{n \to \infty} \frac{n}{n^2 + 1} = 0 \Rightarrow \text{we know} \\ & n \to \infty & n^2 + 1 \end{array}\right)$ not geom. nor p-series) TyLCT: We need to choose by that was referred to in LCT. Mostly, we'll choose Eb, to be a p-series because we know everything about p-series. In our case, choose in= 1. Then Ebn diverges (p-senies w/ p=1) $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{n^2 + 1} \cdot \frac{n}{1} = \lim_{n \to \infty} \frac{n^2}{n^2 + 1} = |<\infty$ =) our series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$ diverges (along ω) Note:

Use L(T when you have "power of n" over a "power of n") ex $\sum_{n=1}^{\infty} \frac{n^3 + n^2 - 1}{n^4 + n^5}$ ex $\sum_{n=1}^{\infty} \frac{3}{n^5 - 1}$

EX 3 Does this series converge or diverge?
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^2+1}$$
(quick: $\lim_{n \to 0^{\infty}} \frac{\sqrt{n+1}}{n^2+1} = 0$ we know
not p-socies nothing
not geom series)
(hoose LCT because it's a power of n over
a power of n.
(hoose $b_n = \frac{\sqrt{n}}{n^2} = \frac{1}{n^{2}h} \leq b_n$ converges,
p series $w/p = \frac{3}{h} > 1$.
 $\lim_{n \to \infty} \frac{a_n}{n^2+1} = \lim_{n \to \infty} \frac{\sqrt{n+1}}{n^2+1}$
 $= \lim_{n \to \infty} \frac{\sqrt{n+1}}{n^2+1} + \frac{n^3h}{1}$
 $= \lim_{n \to \infty} \frac{\sqrt{n+1}}{n^2+1} = 1 < \infty$
 $\Rightarrow b_y LCT, \leq \frac{\sqrt{n+1}}{n^2+1}$ converges (along
 $w \leq b_n$)

(RT) Ratio Test If $\sum a_n$ is a series of positive terms and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho$, *i*) if $\rho < l$, the series converges. then *ii)* if $\rho > 1$ or if $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \infty$, the series diverges. *iii)* if $\rho = 1$, then the test is inconclusive. Note: Choose RT when you have a serves with (a) exponentials and/or (b) factorials EX 4 Does this series converge or diverge? $3 + \frac{3^2}{2!} + \frac{3^3}{3!} + \frac{3^4}{4!} + \dots$ n=1 n=2 n=3 n=4 $=\underbrace{3}_{n=1}^{\infty} \underbrace{3}_{n!}^{n}$ $(note: 3 = \frac{3'}{1})$ (nok: lim 3 - 0) Know nothing use RT (because there is an exponential $\lim_{n \to \infty} \frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^n} = \lim_{n \to \infty} \frac{3^n n!}{(n+1)n!}$ $= \lim_{n \to \infty} \frac{3}{n+1} = 0 < 1$ =) by RT, our series converges.

EX 5 Does this series converge or diverge? $\sum_{n=1}^{\infty} \frac{n!}{5+n}$

quick: not p-series
to test not geom. series
ferm
$$\lim_{n \to \infty} \frac{n!}{s + n} = \infty \Rightarrow$$
 series diverges.

$$FT:$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)!}{S+(n+1)} \cdot \frac{S+n}{n!}$$

$$= \lim_{n \to \infty} \frac{(S+n)(n+1)n!}{(6+n) N!}$$

$$= \lim_{n \to \infty} \frac{n^2 + 6n + S}{n+6}$$

$$= |\infty > | =) \text{ series diverges}$$

Conclusion (For positive sovies)
To test for convergence/divergence:
(1) nthe term test for divergence.
(2) Check for
(a) geometric sentes
(b) p-sentes
(c) Use
(a) LCT (if fraction of "power of n"
over "power of n")
choose
$$b_n = \frac{1}{n^r}$$
 where this
represents the overall "essence" of
(c) KT (if you have factorial of n
and/or exponential)
(1) try OCT
(5) try integral test
(6) try arguing w/ pential sums