

Positive Series: Integral Test

Example:

Determine whether the harmonic series

 $\sum_{n=1}^{\infty} \frac{1}{n}$ converges or diverges.

Solution:

Using the integral test for convergence:

$$\int_{1}^{\infty} \frac{dx}{x} = \lim_{a \to \infty} \int_{1}^{a} \frac{dx}{x} = \lim_{a \to \infty} \ln(a) = \infty$$

: Series diverges

Positive Series: Integral Test

Bounded Sum Test

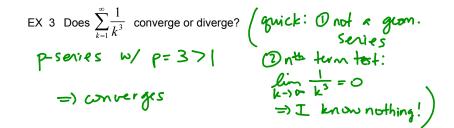
A series $\sum a_i$ of nonnegative terms complete its partial sums are bounded above. Contember $S_n = \sum_{i=1}^{n} a_i$ is $\sum s_n = \sum_{i=1}^{n} a_i$ EX 1 Does $\sum_{k=1}^{\infty} \frac{|\sin k|}{(k+1)!}$ converge? note: $(k+1)! = (k+1)k(k-1)\cdots 4\cdot 3\cdot 2\cdot 1$ = 1.2.3.4...k (k+1) $\geq 1.2.2.2.2.2 = 2^{k}$ $=\frac{1}{(k+1)!} \leq \frac{1}{2^{k}}$ $\implies \frac{|\sin k|}{(k+1)!} \leq \frac{1}{2^k}$ $=) \sum_{k=1}^{\infty} \frac{|\sin k|}{(k+1)!} \leq \sum_{k=1}^{\infty} \frac{1}{2^{k}} = \sum_{k=1}^{\infty} {\binom{1}{2}^{k}} < \infty$ geometric series r= = < <1 =) (onverges -) our series converges

Integral Test If f(x) is continuous, positive and nonincreasing on $[N,\infty)$ and $a_k = f(k)$ for all positive integers, k, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\int_{N}^{\infty} f(x) dx$ converges. 14=f(x) f (~*) f(~*) EX 2 Does $\sum_{k=1}^{\infty} \frac{5k^2}{1+k^3}$ converge or diverge? (quick: O not geom. series (2) nto term test for divergence lim Sk² Lim 1+k³ = O => I know nothing) Try Integral Test: Dpositive ~ $(\widehat{\mathbf{S}}_{f(\mathbf{x})}, \underbrace{\mathbf{S}_{\mathbf{x}^2}}_{|\mathbf{1}_{\mathbf{x}^3}} \checkmark$ Cont. everywhere (exapt at x=-1) 3 nonincreasing 1 $\int_{1}^{\infty} \frac{5x^2}{1+x^3} dx = \int_{2}^{\infty} \frac{5\left(\frac{1}{3}\right)}{u} du$ u = |+x] $du = 3x^{2} dx$ $\frac{1}{5} du = x^{2} dx$ $\frac{1}{5} lim ln|u| l^{2}$ $\frac{1}{5} lim ln|u| l^{2}$

-> our series diverges

p-series test

 $\sum \frac{1}{L^p}$ is called a *p*-series. It converges if p > 1 and diverges if p ≤ 1. Reminder: (in previous lecture on improper integrals) we proved $\int_{x}^{\infty} \frac{1}{x^{r}} dx \quad \begin{cases} converges & if p > 1 \\ diverges & if p \leq 1 \end{cases}$ $\Rightarrow \underbrace{\Xi}_{n=1}^{+} \begin{cases} converges & \text{if } p > 1 \\ diverges & \text{if } p < 1 \\ diverges & \text{if } p < 1 \\ Test \end{cases}$ Warning: Tell the difference between geometric series and p-series. $\sum_{q=1}^{p} \frac{1}{q} \sum_{r=1}^{q} \frac{1}{q} \sum_{q=1}^{q} \frac{1}{q} \sum_{r=1}^{q} \frac{1}{q} \sum_{r$ p-series geometric series (q-variable (q-variable is) is in base) (q-variable is) exponent) $\sum_{q=1}^{\infty} \frac{1}{q^3} \qquad \forall S \qquad \sum_{q=1}^{\infty} \left(\frac{1}{s}\right)^3$



EX 4 Estimate the error made by approximating the series by the

sum of the first five terms. partial sum $S_n = \sum_{k=1}^n \frac{1}{k\sqrt{k}} = \sum_{k=1}^n \frac{1}{k^{3k}}$ (p-series w/ p= 3/2) S=Ss+error ennor = S-Ss $\frac{1}{2} \frac{1}{1} \frac{1}$ $E_s = \sum_{k=1}^{n} \frac{1}{k^{3/2}}$ $E_5 \simeq \int_{-\infty}^{\infty} \frac{1}{\chi^{3h}} dx$ (worst case error) $=\lim_{b\to 0^{\infty}}\int_{s}^{b} x^{-3/2} dx$ $= \lim_{b \to \infty} \frac{-2}{x^{b}} \Big|_{5}^{b} = \lim_{b \to \infty} \frac{-2}{\sqrt{5}} - \frac{-2}{\sqrt{5}}$ = $\frac{2}{\sqrt{5}}$ error estimate = 0.894427in general, if we know what error we can tolerate, then we can determine what n should be to get that error.

we would get $\frac{2}{\ln} = \varepsilon$ ($\varepsilon = cmor$ tolerance solve for γ . I want)

Condusion:
To test for divergence/convergence
of a positive infinite serves:
() try ntb term test for divergence
(if ntb term
$$\rightarrow$$
 nonzero as $n \rightarrow \infty$,
then it diverges; if ntb term $\rightarrow 0$,
we know nothing)
(2) check if it's
(a) geometric services $\sum_{k=1}^{n} a(r^k)$ if $|r| < 1$
(b) p serves $\sum_{k=1}^{n} \frac{1}{k}r$ if p>1 converges
(particularly useful in collepsing or
telescoping surves)