

The Natural Logarithmic Function
$D_{x}\left(\frac{x^{3}}{3}\right)=x^{2}$
$D_{x}\left(\frac{x^{2}}{2}\right)=x$
$D_{x}(x)=1$
$D_{x}(?)=\frac{1}{x}$
$D_{x}\left(\frac{-1}{x}\right)=\frac{1}{x^{2}}$
$D_{x}\left(\frac{-1}{2 x^{2}}\right)=\frac{1}{x^{3}}$

Definition

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

From the First Fundamental Theorem of Calculus

$$
D_{x}\left(\int_{1}^{x} \frac{1}{t} d t\right)=D_{x}(\ln x)=\frac{1}{x}, \quad x>0
$$

$$
\text { EX } 1 \text { Find } \frac{d y}{d x} \text { if } y=\ln \left(x^{2}\right)
$$

$$
E X 2 \text { Find } \frac{d y}{d x} \text { and state the domain }
$$

$$
\text { a) } y=\ln (\sqrt[3]{2 x})
$$

$D_{x}[\ln |x|]=\frac{1}{x} \quad x \neq 0$

Proof

EX 3 Evaluate the integrals.
a) $\int \frac{6}{3 x-2} d x$
b) $\int_{2}^{5} \frac{3 x}{7-2 x^{2}} d x \quad$ Note: This integral is valid because $7-2 x^{2} \neq 0$ on $[2,5]$

Properties of Logarithms

$$
\begin{array}{ll}
\ln 1=0 & \ln (a b)=\ln a+\ln b \\
\ln a^{r}=r \ln a & \ln \left(\frac{a}{b}\right)=\ln a-\ln b
\end{array}
$$

Proof

EX 4 Rewrite as a single logarithmic expression.

$$
\ln \left(x^{2}-9\right)-2 \ln (x-3)-\ln (x+3)
$$

EX 5 Find $\frac{d y}{d x}$ by logarithmic differentiation $y=\frac{\left(x^{2}+3\right)^{\frac{2}{3}}(3 x+2)^{2}}{\sqrt{x+1}}$

