

The Natural Logarithmic Function

The Natural Logarithmic Function

$$
\begin{aligned}
& D_{x}\left(\frac{x^{3}}{3}\right)=x^{2} \\
& D_{x}\left(\frac{x^{2}}{2}\right)=x
\end{aligned} \quad \begin{aligned}
& \text { OHS } \\
& \div X
\end{aligned}
$$

$D_{x}(x)=1$
$D_{x}(?)=\frac{1}{x}$
$D_{x}\left(\frac{-1}{x}\right)=\frac{1}{x^{2}}$
$D_{x}\left(\frac{-1}{2 x^{2}}\right)=\frac{1}{x^{3}}$

There should be some function
such that the derivative of that f_{n} is $\frac{1}{x}$.

Definition	
$\ln x=\int_{1}^{x} \frac{1}{t} d t$,	$x>0$

accumulation fo
$\ln x>0$ if $x>1$

$$
\ln x<0 \text { if } 0<x<1
$$

From the First Fundamental Theorem of Calculus

$$
\begin{aligned}
& D_{x}\left(\int_{1}^{x} \frac{1}{t} d t\right)=D_{x}(\ln x)=\frac{1}{x}, \quad x>0 \\
& D_{x}(\ln x)=\frac{1}{x}, x>0
\end{aligned}
$$

by defy
$\ln x=$ area under the curve $y=\frac{1}{t}$ from $t=1$ to $t=x$.

note: $D_{x}(\ln x)=\frac{1}{x}$
EX 1 Find $\frac{d y}{d x}$ if $y=\ln \left(x^{2}\right)$
(use chain rule)

$$
y^{\prime}=\frac{d y}{d x}=\frac{1}{x^{2}}(2 x)=\frac{2}{x}, x>0
$$

EX 2 Find $\frac{d y}{d x}$ and state the domain

$$
\begin{array}{ll}
\text { a) } y=\ln (\sqrt[3]{2 x})=\ln (2 x)^{1 / 3} & (x>0) \\
y^{\prime}=\frac{1}{(2 x)^{1 / 3}}\left(\frac{1}{3}(2 x)^{-2 / 3}\right)(2)=\frac{2}{3(2 x)}=\frac{1}{3 x}
\end{array}
$$

b) $y=\ln \left(3 x^{2}+14 x-5\right)$ domain: $3 x^{2}+14 x-5>0$

$$
y^{\prime}=\frac{1}{3 x^{2}+14 x-5}(6 x+14)=\frac{6 x+14}{3 x^{2}+14 x-5}
$$

$$
\begin{aligned}
& 3 x^{2}+14 x-5>0 \\
& \mid(3 x-1)(x+5)>0
\end{aligned}
$$

Critical values:

$$
x=-5,1 / 3
$$

test regions answer: $\frac{\sqrt{x<-5} \text { or } x>1 / 3}{\text { domain }}$
$D_{x}[\ln |x|]=\frac{1}{x} \quad x \neq 0$

Proof
Two cases
(1) $x>0$.

$$
D_{x}(\ln |x|)=D_{x}(\ln x)=\frac{1}{x} \quad \checkmark .
$$

(2) $x<0$

$$
D_{x}(\ln |x|)=D_{x}(\ln (-x))=\frac{1}{-x} \cdot(-1)=\frac{1}{x}
$$

(we already stated by dope + First Fund. Them of Calculus, $D_{y}(\ln x)=\frac{1}{x}$ if $x>0$.)
note: $D_{x}(\ln |x|)=\frac{1}{x}, x \neq 0$
EX 3 Evaluate the integrals.

$$
\begin{aligned}
& \text { a) } \int \frac{6}{3 x-2} d x=\int \frac{2}{4} d u \quad \int \frac{1}{x} d x=\ln |x|+C \\
& \left.\begin{array}{l}
u=3 x-2 \\
2 d u=3 d x \cdot 2
\end{array} \right\rvert\,=2 \int \frac{1}{u} d u=2(\ln |u|)+c \\
& 2 d u=6 d x \quad=2 \ln |3 x-2|+c
\end{aligned}
$$

b) $\int_{2}^{5} \frac{3 x}{7-2 x^{2}} d x$

Note: This integral is valid because $7-2 x^{2} \neq 0$ on $[2,5]$

$$
\begin{aligned}
& \begin{aligned}
& u=7-2 x^{2} \\
& d u=-4 x d x \\
& \frac{-1}{4} d u=x d x \\
& \left.\begin{aligned}
x=2, u & =7-2.2^{2} \\
& =7.8=-1 \\
x=5, u & =7.2 .5^{2} \\
& =7.50
\end{aligned} \right\rvert\,=\frac{-3}{4} \int_{-1}^{-43} \frac{3\left(-\frac{1}{4}\right)}{4} d u \\
&-\frac{1}{n} d \underline{u}=\left.\frac{-3}{4} \ln |u|\right|_{-1} ^{-43}
\end{aligned} \\
&=\frac{-3}{4}(\ln |-43|-\ln |-1|) \\
&=\frac{-3}{4}(\ln 43-\ln 1)
\end{aligned}
$$

(1) $\ln 1=0$
(3) $\ln (a b)=\ln a+\ln b$
(2) $\ln a^{r}=r \ln a$
(4) $\ln \left(\frac{a}{b}\right)=\ln a-\ln b$

Proof

$$
a x>0
$$

(3) $P_{x}(\ln (a x))$
(1)

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t
$$

$$
\ln \left\lvert\,=\int_{1}^{1} \frac{1}{t} d t\right.
$$

$$
=0 \text { (area) }
$$

but also we know, by defn,

$$
\begin{aligned}
& D_{x}(\ln x)=\frac{1}{x} \\
& \Rightarrow \ln x=\ln (a x)+C \quad \text { (c some constant } t)
\end{aligned}
$$

let $x=1$. Then we know $\ln 1=0$

$$
\begin{aligned}
\ln \mid & =\ln a+c \\
0 & =\ln a+c \\
\Rightarrow c & =-\ln a \\
\Rightarrow \ln x & =\ln (a x)-\ln a \\
\Leftrightarrow & \ln (a x)=\ln a+\ln x
\end{aligned}
$$

EX 4 Rewrite as a single logarithmic expression. (2) $x>3$ and (3) $x>-3$
$\ln \left(x^{2}-9\right)-2 \ln (x-3)-\ln (x+3) \quad$ domain: $\quad x>3$

$$
\begin{aligned}
& =\ln \left(x^{2}-9\right)+\ln (x-3)^{-2}+\ln (x+3)^{-1} \\
& =\ln \left(\left(x^{2}-9\right)(x-3)^{-2}(x+3)^{-1}\right)=\ln \left(\frac{(x-3)(x+3)}{(x-3)^{2}(x-3)}\right) \\
& \left.\quad=\ln \left(\frac{1}{x-3}\right)=-\ln (x-3)\right)
\end{aligned}
$$

EX 5 Find $\frac{d y}{d x}$ by logarithmic differentiation $y=\frac{\left(x^{2}+3\right)^{\frac{2}{3}}(3 x+2)^{2}}{\sqrt{x+1}}$
(1) take \ln of both sides.
(2) do implicit differentiation.

$$
\begin{aligned}
\ln y & =\ln \left(\frac{\left(x^{2}+3\right)^{2 / 3}(3 x+2)^{2}}{\sqrt{x+1}}\right) \\
\ln y & =\frac{2}{3} \ln \left(x^{2}+3\right)+2 \ln (3 x+2)-\frac{1}{2} \ln (x+1) \\
D_{x}(\ln y) & =D_{x}\left(\frac{2}{3} \ln \left(x^{2}+3\right)+2 \ln (3 x+2)-\frac{1}{2} \ln (x+1)\right) \\
\frac{1}{y}\left(\frac{d y}{d x}\right) & =\frac{2}{3}\left(\frac{2 x}{x^{2}+3}\right)+2\left(\frac{(3)}{3 x+2}\right)-\frac{1}{2}\left(\frac{1}{x+1}\right) \\
\frac{d y}{d x} & =y\left(\frac{4 x}{3\left(x^{2}+3\right)}+\frac{6}{3 x+2}-\frac{1}{2(x+1)}\right) \\
\frac{d y}{d x} & =\frac{\left(x^{2}+3\right)^{2 / 3}(3 x+2)^{2}}{\sqrt{x+1}}\left(\frac{4 x}{3\left(x^{2}+3\right)}+\frac{6}{3 x+2}-\frac{1}{2(x+1)}\right)
\end{aligned}
$$

"Take Home mossage"

$$
\begin{aligned}
& D_{x}(\ln |x|)=\frac{1}{x}, x \neq 0 \\
& \Leftrightarrow \int \frac{1}{x} d x=\ln |x|+c \quad(x \neq 0)
\end{aligned}
$$

Warning:
(1) $\left.\int \frac{1}{\text { Joe }} d(J x e)=\ln \right\rvert\,$ Jve $\mid+C$
(2) $\int \frac{1}{y^{2}} d\left(y^{2}\right)=\ln \left|y^{2}\right|+C$
(3) $\int \frac{1}{y^{2}} d y \neq \ln \left|y^{2}\right|+c$

$$
\int \frac{1}{y^{2}} d y=\int y^{-2} d y=\frac{y^{-1}}{-1}+c
$$

(4) $\int \frac{1}{\underline{O}} d \underline{\underline{O}}=\ln |c\rangle+C$

