

Zeno's Paradox says that if you step from 0 to $1 / 2$, then keep taking steps halfway between where you are and 1 that you will never get to 1 .

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}
$$

Let S_{i} be the partial sum of the first i terms in the sequence.

$$
\begin{aligned}
& S_{1}=\frac{1}{2}= \\
& S_{2}=\frac{1}{2}+\frac{1}{4}= \\
& S_{3}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}= \\
& \vdots \\
& S_{n}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}= \\
& \lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{n}}\right)=
\end{aligned}
$$

Infinite Series

$$
a_{1}+a_{2}+a_{3}+\ldots+a_{n}+\ldots=\sum_{i=1}^{\infty} a_{i}
$$

Partial Sum

$$
\sum_{i=1}^{n} a_{i}=S_{n}
$$

Definition

$\sum a_{i}$ converges and has a sum, S, if the sequence of partial sums converges to S, i.e. $\lim _{n \rightarrow \infty} S_{n}=S$. If $\left\{S_{n}\right\}$ diverges, then the series diverges and has no sum.

Geometric Series

$$
a \neq 0 \quad \sum_{i=1}^{\infty} a r^{i-1}=a+a r+a r^{2}+a r^{3}+\ldots
$$

EX 1 Show that a geometric series converges for at least some r and find its sum.

$$
S_{n}=a+a r+a r^{2}+a r^{3}+\ldots+a r^{n}
$$

EX 2 If this pattern continues indefinitely, what fraction of the original square will eventually be unshaded?

Theorem

$\mathrm{n}^{\text {th }}$ term test for divergence
If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or if $\lim _{n \rightarrow \infty} a_{n}$ DNE, then the series diverges.

EX 3 Does $\sum_{i=1}^{\infty} \frac{3 i-7}{4 i+3}$ converge or diverge?

$\underline{\text { Harmonic Series }} \quad \sum_{n=1}^{\infty} \frac{1}{n}=$
 $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\ldots$
 $\lim _{n \rightarrow \infty} \frac{1}{n}=0$
 but does it converge?

EX 4 does $\sum_{i=1}^{\infty} \frac{3}{i(i+1)}$ converge or diverge?

Linearity of a Convergent Positive Series

If $\sum_{i=1}^{\infty} a_{i}$ and $\sum_{i=1}^{\infty} b_{i}$ both converge,
then $\sum_{i=1}^{\infty} c a_{i}=c \sum_{i=1}^{\infty} a_{i}$ and $\sum_{i=1}^{\infty}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{\infty} a_{i}+\sum_{i=1}^{\infty} b_{i}$
also converge.

EX 5 Does $\sum_{k=1}^{\infty}\left[5\left(\frac{1}{2}\right)^{k}-3\left(\frac{1}{7}\right)^{k}\right]$ diverge or converge?

Theorem
If $\sum_{k=1}^{\infty} a_{k}$ diverges and $\mathrm{c} \neq 0$, then $\sum_{k=1}^{\infty} c a_{k} \quad$ diverges.
Grouping Terms in an infinite series
The terms in a convergent positive series can be grouped in any way and
the new series will still converge to the same sum.

Why don't we just use computers to tell if a series converges?

Consider the Harmonic Series:
$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$
On a computer, for $\mathrm{n}=10^{43}, \mathrm{~S}_{\mathrm{n}}=100$ and $\mathrm{S}_{272.000,000} \cong 20$

