

Definition

An infinite sequence is an ordered arrangement of real numbers.

$$a_1, a_2, a_3, a_4, \dots$$

 $\{a_n\}_{n=1}^{\infty}$
 $\{a_n\}$

vs

iteration (explicit)

recursion (implicit)

 $a_n = 5n - 3$

 $a_1 = 2$ $a_n = a_{n-1} + 5 \qquad n \ge 2$

We can just write out the terms.

2, 7, 12, 17, 22, ...

Definition

<u>Convergence</u>

 $\{a_n\}$ <u>converges</u> to *L*, written $\lim_{n \to \infty} a_n = L$

if for each positive $\, \varepsilon \,$ there exists a corresponding positive N such that

$$n \ge N \Longrightarrow \left| a_n - L \right| < \varepsilon \; .$$

If a sequence fails to converge to a finite L, then it diverges.

Example
$$a_n = \frac{n}{2n-1}$$

		-
0		1

EX 1 Does
$$\{a_n\}$$
 converge? $a_n = \frac{5n^2 - 3n + 1}{2n^2 + 7}$
If so, what is the limit?

Properties of limits of sequences

Assume $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} b_n$ exist, then

2)
$$\lim_{n \to \infty} (a_n \cdot b_n) = \left(\lim_{n \to \infty} a_n\right) \left(\lim_{n \to \infty} b_n\right)$$
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$$

3)
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}, \quad b_n \neq 0$$

$$\lim_{n \to \infty} ka_n = k \lim_{n \to \infty} a_n$$

 b_n) 5) $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$

If $\lim_{x\to\infty} f(x) = L$, then $\lim_{n\to\infty} f(n) = L$. *x* is a continuous variable *n* is a discrete variable

We can use l'Hopital's Rule.

EX 2 Determine if $\{a_n\}$ converges and if so, find $\lim_{n \to \infty} a_n$.

a)
$$a_n = \frac{\ln(1/n)}{\sqrt{2n}}$$

b)
$$a_n = \frac{n^{100}}{e^n}$$

Squeeze Theorem

If $\{a_n\}$ and $\{c_n\}$ both converge to L and $a_n \leq b_n \leq c_n$ for $n \geq K$ (some fixed integer), then $\{b_n\}$ also converges to L.

EX 3 Determine if $\{a_n\}$ converges and if so, find $\lim_{n \to \infty} a_n$.

 $\{a_n\}=e^{-n}\sin n$

<u>Theorem</u>

If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.

EX 4 Show that if *r* is in this interval (-1,1), then $\lim_{n\to\infty} r^n = 0.$ Monotonic Sequence Theorem

If U is an upper bound for a nondecreasing sequence $\left\{a_{n}\right\}$,then

the sequence converges to a limit A such that $A \leq U$.

Also, if *L* is a lower bound for a nonincreasing sequence $\{b_n\}$, then

the sequence converges to a limit B such that $B \ge L$.

EX 5 Write the first four terms for this sequence. Show that it converges.

$$\left\{a_n\right\} = \frac{n}{n+1} \left(2 - \frac{1}{n^2}\right)$$