

Definition

An infinite sequence is an ordered arrangement of real numbers.

$$
\begin{aligned}
& a_{1}, a_{2}, a_{3}, a_{4}, \ldots \\
& \left\{a_{n}\right\}_{n=1}^{\infty} \\
& \left\{a_{n}\right\}
\end{aligned}
$$

iteration (explicit) vs recursion (implicit)

$$
\begin{aligned}
& a_{n}=5 n-3, n \geq 1 \\
& \text { (this is direct }
\end{aligned} \quad\left\{\begin{array}{l}
a_{1}=2 \\
a_{n}=a_{n-1}+5
\end{array} \quad n \geq 2\right.
$$

formula)

We can just write out the terms.

$$
\begin{aligned}
& \text { (arithmetic } \\
& \text { Sequence) }
\end{aligned}
$$

Definition
Convergence
$\left\{a_{n}\right\}$ converges to L, written $\lim _{n \rightarrow \infty} a_{n}=L$
if for each positive ε there exists a corresponding positive N such that

$$
n \geq N \Rightarrow\left|a_{n}-L\right|<\varepsilon
$$

(whenever n is big If a sequence fails to converge to a finite L, then it diverges. enough,

Example $\quad a_{n}=\frac{n}{2 n-1} \quad n \geq 1$

a_{n} is really close to L)

$$
\begin{aligned}
& n=1000, \\
& a_{1000}=\frac{1000}{1999} \simeq \frac{1}{2}
\end{aligned}
$$

EX 1 Does $\left\{a_{n}\right\}$ converge? $\quad a_{n}=\frac{5 n^{2}-3 n+1}{2 n^{2}+7}$
If so, what is the limit?

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{5 n^{2}-3 n+1}{2 n^{2}+7} & =\lim _{n \rightarrow \infty} \frac{3 n^{2}}{2 n^{2}} \\
\left(\frac{\infty}{\infty} \text { case }\right) & =\lim _{n \rightarrow \infty} \frac{5}{2}=\frac{5}{2}
\end{aligned}
$$

yes, this sequence converges to $5 / 2$

Properties of limits of sequences

Assume $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist, then

1) $\lim _{n \rightarrow \infty} k=k$
2) $\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)$
3) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}, \quad b_{n} \neq 0$
4) $\lim _{n \rightarrow \infty} k a_{n}=k \lim _{n \rightarrow \infty} a_{n}$
5) $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}$

If $\lim _{x \rightarrow \infty} f(x)=L$, then $\lim _{n \rightarrow \infty} f(n)=L$.
x is a continuous variable
n is a discrete variable
We can use l'Hopital's Rule.

EX 2 Determine if $\left\{a_{n}\right\}$ converges and if so, find $\lim _{n \rightarrow \infty} a_{n}$.

$$
\begin{aligned}
& \text { a) } a_{n}=\frac{\ln (1 / n)}{\sqrt{2 n}} \\
& \lim _{n \rightarrow \infty} \frac{\ln \left(\frac{1}{n}\right)}{\sqrt{2 n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{1 / n}\left(\frac{-1}{n^{2}}\right)}{\frac{1}{2}(2 n)^{-1 / 2}(2)}=\lim _{n \rightarrow \infty} \frac{-1 / n}{1 / \sqrt{2 n}} \\
& \left(\frac{\infty}{\infty} \text { (ase) } \lim _{n \rightarrow \infty} \frac{-\sqrt{2 n}}{n}\right. \\
& =\lim _{n \rightarrow \infty} \frac{-\sqrt{2}}{\sqrt{n}}=0 \\
& \lim _{n \rightarrow \infty} \frac{n^{100}}{e^{n}} \stackrel{Q}{=} \lim _{n \rightarrow \infty} \frac{100 n^{99}}{e^{n}}=\lim _{n \rightarrow \infty} \frac{100(99) n^{98}}{e^{n}} \\
& \text { (} \frac{\infty}{\infty} \text { casc) } \\
& \text { ()․․․ } \stackrel{\text { () }}{=} \lim _{n \rightarrow \infty} \frac{100!}{e^{n}}=0
\end{aligned}
$$

Squeeze Theorem
If $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ both converge to L and $a_{n} \leq b_{n} \leq c_{n}$ for $n \geq K$ (some fixed integer), then $\left\{b_{n}\right\}$ also converges to L.

EX 3 Determine if $\left\{a_{n}\right\}$ converges and if so, find $\lim _{n \rightarrow \infty} a_{n}$.

$$
\begin{aligned}
& \left\{a_{n}\right\}=e^{-n} \sin n \\
& \lim _{n \rightarrow \infty} e^{-n} \sin (n)=\lim _{n \rightarrow \infty} \frac{\sin (n)}{e^{n}} \\
& \lim _{n \rightarrow \infty} \frac{-1}{e^{n}} \leq \lim _{n \rightarrow \infty} \frac{\sin (n)}{e^{n}} \leq \lim _{n \rightarrow \infty} \frac{1}{e^{n}} \\
& \quad(\text { because } \sin n \in[-1,1]) \\
& 0 \leq \lim _{n \rightarrow \infty} \frac{\sin (n)}{e^{n}} \leq 0 \\
& \Rightarrow \lim _{n \rightarrow \infty} \frac{\sin (n)}{e^{n}}=0 .
\end{aligned}
$$

Theorem
If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

EX 4 Show that if r is in this interval $(-1,1)$, then $\lim _{n \rightarrow \infty} r^{n}=0$.
Pf Assume $r \neq 0$.
if $r \in(-1,1)$, then $|r|<1$ $\Leftrightarrow \frac{1}{|r|}>1$. So let $\frac{1}{|r|}=1+p$ for sonce $p>0$.

$$
\begin{gathered}
\frac{1}{|r|^{n}}=(1+p)^{n}=1+n p+\ldots+p^{n}>n p \\
\frac{1}{|r|^{n}}>n p \\
|r|^{n}<\frac{1}{n p}
\end{gathered}
$$

we know $|r|^{n} \geq 0$.

$$
\begin{aligned}
& \left.0 \leq \lim _{n \rightarrow \infty}|r|^{n} \leq \lim _{n \rightarrow \infty} \frac{1}{n p} \quad \begin{array}{c}
(p \text { is fixed } \\
\text { number } \\
>0
\end{array}\right) \\
& 0 \leq \lim _{n \rightarrow \infty}|r|^{n} \leq 0 \\
& \Rightarrow \lim _{n \rightarrow \infty}|r|^{n}=0 \Rightarrow \lim _{n \rightarrow \infty} r^{n}=0
\end{aligned}
$$

Monotonic Sequence Theorem
If U is an upper bound for a nondecreasing sequence $\left\{a_{n}\right\}$, then the sequence converges to a limit A such that $A \leq U$.

Also, if L is a lower bound for a nonincreasing sequence $\left\{b_{n}\right\}$, then the sequence converges to a limit B such that $B \geq L$.

EX 5 Write the first four terms for this sequence. Show that it converges.

$$
\begin{aligned}
& \left\{a_{n}\right\}=\frac{n}{n+1}\left(2-\frac{1}{n^{2}}\right) \\
& \lim _{n \rightarrow \infty} \frac{n}{n+1}\left(2-\frac{1}{n^{2}}\right) \\
& \left.=\lim _{n \rightarrow \infty}\left(\frac{2 n}{(n+1)(n)}\right) \frac{x}{(n+1) n^{2}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{2 n^{2}-1}{n(n+1)}\right)=\lim _{n \rightarrow \infty} \frac{2 n^{2}-1}{n^{2}+n} \\
& =2 \\
& \lim _{n \rightarrow \infty} \frac{n}{n+1}\left(2-\frac{1}{n^{2}}\right)=\left(\lim _{n \rightarrow \infty} \frac{n}{n+1}\right)\left(\lim _{n \rightarrow \infty}\left(2-\frac{1}{n^{2}}\right)\right) \\
& =1 \cdot 2=2
\end{aligned}
$$

Conclusion

- to determine if sequence converges or diverges, take limit as $n \rightarrow \infty$.

If the limit is finite, it converges to that number.
If the limit is $\pm \infty$ or $\triangle N^{\prime} E$, then sequence diverges.

