

A <u>sequence</u> $\{a_n\}$ is a function such that the domain is the set of positive integers and the range is a set of real numbers.

Write five terms for each of these sequences:

$$a_{n} = \frac{n}{2n+1}$$

$$a_{1} = \frac{1}{2}, a_{2} = \frac{2}{5}, a_{3} = \frac{3}{5}, a_{1} = \frac{3}{7}, a_{1} = \frac{3}{7}, a_{2} = \frac{2}{5}, a_{3} = \frac{3}{7}, a_{1} = \frac{1}{2}, a_{2} = \frac{2}{5}, a_{3} = \frac{3}{5}, a_{1} = \frac{3}{7}, a_{2} = \frac{2}{5}, a_{3} = \frac{3}{5}, a_{1} = \frac{2}{5}, a_{2} = \frac{2}{5}, a_{3} = \frac{2}{5},$$

Common Elements of Sequences/Series:

Odd numbers
$$1, 3, 5, 7, 9, ...$$

 $a_n = 2n+1$, $n = 0, 12, ...$ or $a_n = 2n-1, n = 1, 2, ...$
Even numbers $2, 4, 6, 8, 10, ...$
 $a_n = 2n$, $n = 1, 2, 3, ...$ or $a_n = 2n-2, n = 2, 3, 4, ...$
Factorials $1, 1, 2, 6, 24, 120, 720, ...$
 $= 0!, 1!, 2!, 3!, 4!, 5!, 6!, 3...$ $a_n = n!$, $n = 0, ...$
Alternating signs $1, -1, 1, -1, 1, -1, 1, -1, ...$ or $a_n = (n-1)!, n = 1, 2, 3, ...$
Powers of 2 $1, 2, 4, 8, 16, 32, 64, ...$
 $a_n = 2^n$, $n = 0, 1, 2, ...$ or $a_n = 2^{n-1}$, $n = 1, 2, 3, ...$

Arithmetic, Geometric or Neither?
nth term 20th term
$$a_n \rightarrow 0$$
? $\sum_{k=1}^{\infty} a_k \rightarrow \text{some value}$?

a)
$$\frac{1}{1,1,2,3,5,8,13,...}$$
 (Fibonacci sequence)
 $a_{1}=1, a_{2}=1, a_{1}=2, a_{1}=2, a_{1}=1, a_{1}=2, a_{2}=2, a_{2}=2, a_{1}=2, a_{2}=2, a_{2}=2, a_{1}=2, a_{2}=2, a_{1}=2, a_{2}=2, a_{1}=2, a_{2}=2, a_{1}=2, a_{2}=2, a_{1}=2, a_{2}=2, a_{2}=2, a_{1}=2, a_{2}=2, a_{2}=2, a_{1}=2, a_{2}=2, a_{2}=2, a_{2}=2, a_{2}=2, a_{2}=2, a_{1}=2, a_{2}=2, a_{$

Write a formula for the n^{th} term of these sequences.

a)
$$\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \dots$$

w $\frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \dots$
 $a_{n} = \frac{2n-1}{2n}$ $n = 1, 7, 3, \dots$
b) $\frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \dots$
 $a_{n} = \frac{1}{2^{2^{n}}}$ $n = 1, 7, 3, \dots$
 $a_{n} = \frac{1}{2^{2^{n}}}$ $a_{n} = \frac{1}{2^{2^{n}}}$ $a_{n} = \frac{1}{2^{2^{n}}}$ $a_{n} = \frac{1}{2^{2^{n}}}$ $a_{n} = 1, 7, 3, \dots$
 $a_{n} = \frac{1}{2}, \frac{2}{5}, \frac{2}{5}, \frac{2}{5}, \frac{2}{5}, \dots$
 $a_{n} = \frac{1}{2^{2^{n}}}, \frac{2}{5}, \frac{2}{5$