

Sequences and Series Review

$$
\begin{array}{ll}
2,4,6,8,10, \ldots & 2,4,8,16,32, \ldots \\
a_{n}=a_{1}+(n-1) d & a_{n}=a_{1} r^{(n-1)} \\
\sum_{k=1}^{6} a_{1}+(k-1) d & \sum_{k=1}^{6} a_{1} r^{k-1} \\
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) & S_{n}=a_{1} \frac{1-r^{n}}{1-r}
\end{array}
$$

A sequence $\left\{a_{n}\right\}$ is a function such that the domain is the set of positive integers and the range is a set of real numbers.

Write five terms for each of these sequences:

$$
\begin{array}{c|l}
a_{n}=\frac{n}{2 n+1} & a_{n}=\frac{(-2)^{n}}{n!} \quad-2,2, \frac{-4}{3}, \frac{2}{3}, \frac{-4}{15}, \\
a_{1}=\frac{1}{3}, a_{2}=\frac{2}{5}, a_{3}=\frac{3}{7}, & a_{1}=\frac{-2}{1!}=-2 \\
a_{4}=\frac{4}{9}, a_{5}=\frac{5}{11}
\end{array}
$$

A series is the sum of a sequence. $\sum_{k=1}^{n} a_{k}$

$$
a_{2}=\frac{(-2)^{2}}{2!}=\frac{4}{2}=2
$$

A partial sum is the sum of the first n terms.
An infinite sum is the sum from $k=1$ to ∞.

$$
a_{3}=\frac{(-2)^{3}}{3!}=\frac{-8}{3 \cdot 2 \cdot 1}=\frac{-4}{3}
$$

Find these partial sums:

$$
a_{4}=\frac{(-2)^{4}}{4!}=\frac{16}{8 \cdot 3}=\frac{2}{3}
$$

$$
\begin{aligned}
& \sum_{k=0}^{3} \frac{(-2)^{k}}{k!} \\
& \sum_{k=1}^{5} \frac{k}{2 k+1} \quad a_{5}=\frac{(-2)^{5}}{5!}=\frac{-3 x^{-4}}{5 \cdot 4 \cdot 3 \cdot 2} \\
& \left.\begin{array}{c}
=\frac{(-2)^{0}}{0!}+\frac{(-2)^{1}}{1!}+\frac{(-2)^{2}}{2!} \\
(k=0) \\
(k=1)
\end{array}\right)=\left(\frac{1}{2+1}\right) \\
& +\frac{(-2)^{3}}{3!} \\
& \text { (} k=3 \text {) } \\
& =1+-2+\frac{4}{2}+\frac{-8}{6} \\
& =1-2+2-\frac{4}{3}=\frac{-1}{3} \\
& =\frac{-4}{15} \\
& +\left(\frac{2}{4+1}\right)+\left(\frac{3}{6+1}\right) \\
& +\left(\frac{4}{8+1}\right)+\left(\frac{5}{10+1}\right) \\
& =\frac{1}{3}+\frac{2}{5}+\frac{3}{7}+\frac{4}{9}+\frac{5}{11} \\
& =\frac{7141}{3465}
\end{aligned}
$$

Arithmetic Sequence, Series
$d=$ common difference
$a_{n}=a_{1}+(n-1) d{ }^{n+\frac{t}{b}}$ term
ex $2,5,8,11,14$ sequence

$$
d=3
$$

$$
r=\text { common ratio }
$$

$a_{n}=a_{1} r^{(n-1)} n \frac{\text { th }}{}$ term in sequence ex $2,6,18,54, \ldots$.

$$
r=3
$$

$$
\underbrace{S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) n^{n}{ }^{\text {th }} \text { partial }}_{\text {arithmetic }} \underset{\text { geometric }}{S_{n}=a_{1} \frac{1-r^{n}}{1-r}}
$$

Determine the sum for each of these:
(1) $\sum_{k=1}^{50}(2 k-3)$
(arithmetic series) (geometric)

$$
\begin{aligned}
& S_{50}=\frac{30}{2}\left(a_{1}+a_{50}\right) \\
& a_{k}=2 k-3 \\
& a_{1}=2(1)-3=-1 \\
& a_{50}=2(50)-3=97 \\
& \Rightarrow S_{50}=25(-1+97) \\
& =25(96 \\
& \\
& =2400
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { ex }}{} \sum_{n=5}^{\infty} 3\left(\frac{1}{4}\right)^{n} \quad r=\frac{1}{4}<1 \\
& =\frac{3\left(\frac{1}{4}\right)^{5}}{1-\frac{1}{4}}=\frac{\frac{3}{4^{5}}}{\frac{3}{4}}=\frac{3}{4^{5}} \cdot \frac{4}{3}=\frac{1}{4^{4}}
\end{aligned}
$$

$$
\text { ex } \begin{aligned}
\sum_{n=9}^{\infty}-5\left(\frac{7}{8}\right)^{n+3} \quad r=7 / 8 & <1 \\
=\frac{-5\left(\frac{7}{8}\right)^{9+3}}{1-7 / 8}=\frac{-5\left(\frac{7}{8}\right)^{12}}{\frac{1}{8}} & =-5\left(\frac{7}{8}\right)^{12} \cdot \frac{8}{1} \\
& =\frac{-5\left(7^{12}\right)}{8^{11}}
\end{aligned}
$$

ex

$$
\begin{aligned}
\sum_{k=4}^{\infty} 72\left(\frac{1}{3^{2 k}}\right) & =\sum_{k=4}^{\infty} 72\left(\frac{1}{3^{2}}\right)^{k} \\
& =\sum_{k=4}^{\infty} 72\left(\frac{1}{9}\right)^{k} \quad r=1 / 9<1 \\
& =\frac{72\left(\frac{1}{9}\right)^{4}}{1-\frac{1}{9}}
\end{aligned}=72\left(\frac{1}{9^{4}}\right) \cdot \frac{9}{8} . ~\left(\frac{1}{9^{3}}\right)=\frac{1}{9^{2}}=\frac{1}{81} .
$$

Common Elements of Sequences/Series:
Odd numbers $1,3,5,7,9, \ldots$

$$
a_{n}=2 n+1, n=0,1,2, \ldots \quad \text { or } \quad a_{n}=2 n-1, n=1,2, \ldots
$$

Even numbers $2,4,6,8,10, \ldots$

$$
a_{n}=2 n, n=1,2,3, \ldots \quad \text { or } \quad a_{n}=2 n-2, n=2,3,4, \ldots
$$

Factorials $1,1,2,6,24,120,720, \ldots$

$$
=0!, 1!, 2!, 3!, 4!, 5!, 6!, \ldots, \quad a_{n}=n!, n=0,1, \ldots
$$

Alternating signs $1,-1,1,-1,1,-1, \ldots$ or $a_{n}=(n-1)!, n=1,2, \ldots$

$$
a_{n}=(-1)^{n}, n=0,1,2, \ldots \quad \text { or } \quad a_{n}=(-1)^{n-1}, n=1,2,3, \ldots
$$

Powers of $21,2,4,8,16,32,64, \ldots$

$$
a_{n}=2^{n}, n=0,1,2, \ldots \text { or } a_{n}=2^{n-1},
$$

Arithmetic, Geometric or Neither?

$$
\begin{aligned}
& \text { c or Neither? } \\
& \mathrm{n}^{\text {th }} \text { term } \quad 20^{\text {th }} \text { term } \quad a_{n} \rightarrow 0 ? \quad \sum_{k=1}^{\infty} a_{k} \rightarrow \text { some value? }
\end{aligned}
$$

a) $a_{1,1, i, 2,3,5,8,13, \ldots . . \text { (Fibonacci sequence) }}$
$a_{1}=1, a_{2}=1$.
$a_{n}=a_{n-1}+a_{n-2}$ (recursive)

$$
a_{20}=a_{19}+a_{18}
$$

$$
\begin{array}{ll}
\text { b) } a_{1}=a_{n+1}=\frac{a_{n}}{n}, n=1,2, \ldots \\
a_{2}=\frac{a_{1}}{1}=\frac{2}{1}=2^{2} & a_{4}=\frac{a_{3}}{3}=\frac{1}{3} \\
a_{3}=\frac{a_{2}}{2}=\frac{2}{2}=1 & a_{5}=\frac{a_{4}}{4}=\frac{1}{12}
\end{array}
$$

(a_{n} dues not go to Oas

$$
\Rightarrow \sum_{k=1}^{\infty} a_{k}=\infty
$$

$$
2,2,1,1 / 3,1 / 2, \frac{1}{60}, \ldots
$$

(neither)
c) $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \quad a_{6}=\frac{a_{5}}{5}=\frac{1}{60}$

$$
a_{n} \rightarrow 0 \text { (as } n \rightarrow \infty \text {) }
$$

$$
a_{n}=\frac{1}{2^{n}}, n=1,2,3, \ldots
$$

$$
a_{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

d) $.9, .09, .009, .0009, \ldots$

$$
a_{20}=\frac{1}{2^{20}}
$$

$$
\sum_{k=1}^{\infty} a_{k} \text { finite? don't know }
$$

$$
\begin{aligned}
& =\frac{9}{10}, \frac{9}{100}, \frac{9}{1000}, \frac{9}{10000}, \ldots \\
& =\frac{9}{10}, \frac{9}{10^{2}}, \frac{9}{10^{3}}, \frac{9}{10^{4}}, \ldots
\end{aligned}
$$

$$
\sum_{k=1}^{\infty} \frac{1}{2^{k}}=\frac{1 / 2}{1-1 / 2}=1
$$

(geometric series)

$$
a_{n}=\frac{9}{10^{n}}=9\left(\frac{1}{10}\right)^{n} \Rightarrow \sum_{n=1}^{\infty} 9\left(\frac{1}{10}\right)^{n}=\frac{9(1 / 10)}{1-1 / 10}=\frac{9 / 10}{9 / 10}=1
$$

geometric

$$
\begin{aligned}
& 0.9+0.09+0.009+\ldots=1 \\
& \Leftrightarrow 0 . \overline{9}=1
\end{aligned}
$$

Write a formula for the $\mathrm{n}^{\text {th }}$ term of these sequences.
a) $\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \ldots$

$$
a_{n}=\frac{2 n-1}{2 n}, n=1,2,3, \ldots
$$

b) $\frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \ldots$
denominator:

$$
2,2^{2}, 2^{4}, 2^{8}, 2^{16}, \ldots
$$

$$
n=1,2,3, \ldots
$$

n	exponent
1	$1=2^{0}=2^{1-1}$
2	$2=2^{1}=2^{2-1}$
3	$4=2^{2}=2^{3-1}$
4	$8^{1}=2^{3}=2^{4-1}$
5	$16=2^{4}=2^{5-1}$

$\frac{\text { numerator }}{2,8,26,80,242, \ldots}$
c) $\frac{-2}{1}, \frac{8}{2}, \frac{-26}{6}, \frac{80}{24}, \frac{-242}{120}$
mol not no 3
(alternating signs)

$$
\begin{gathered}
a_{n}=\frac{(-1)^{n}\left(3^{n}-1\right)}{n!}, \\
n=1,2,3, \ldots \\
a_{n}=\frac{(-1)^{n+1}\left(3^{n+1}-1\right)}{(n+1)!} \\
n=0,1,2, \ldots
\end{gathered}
$$

$$
=(3-1),(9-1),(27-1),(81-1),(243-1), \ldots
$$

$$
=\left(3^{1}-1\right),\left(3^{2}-1\right),\left(3^{3}-1\right),\left(3^{4}-1\right),\left(3^{5}-1\right), \ldots
$$

$$
n=1 \quad n=2 \quad n=3
$$

denominator

$$
\begin{aligned}
& 1,2,6,24,120, \ldots \\
= & 1!, 2!, 3!, 4!, 5!, \ldots
\end{aligned}
$$

