

Previously we found the limit of an expression which appeared to approach $\frac{0}{0}$.

Determine this limit. $\lim_{x \to 2} \frac{x^2 - 2x}{x^2 + 3x - 10}$

We also were able to geometrically determine this limit. $\lim_{x\to 0} \frac{\sin x}{x}$

L'Hopital's Rule:

If
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
 and $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists

(either finite or
$$\pm \infty$$
), then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.

This makes both of the previous problems more simple.

EX 1 Determine these limits using the rule above.

a)
$$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 + 3x - 10}$$

b)
$$\lim_{x \to 0} \frac{\sin x}{x}$$

EX 2
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{2\sin x}$$

EX 3
$$\lim_{x \to 0^+} \frac{7^{\sqrt{x}} - 1}{2^{\sqrt{x}} - 1}$$

EX 4
$$\lim_{x \to 0} \frac{\sin x - \tan x}{x^2 \sin x}$$

EX 5
$$\lim_{x \to 0} \frac{\cos x}{x}$$

EX 6
$$\lim_{x \to 0^+} \frac{\int_0^x \sqrt{t} \cos t \, dt}{x^2}$$

EX 7
$$\lim_{x \to 0^{-}} \frac{\sin x + \tan x}{e^{x} + e^{-x} - 2}$$