

Rationalizing Substitutions

Integrands involving $\sqrt[n]{a x+b}$
EX $1 \int \frac{x^{2}+3 x}{\sqrt{x+4}} d x$

EX $2 \int \frac{\sqrt{x}}{x+1} d x$

Integrals involving $\sqrt{a^{2}-x^{2}}, \sqrt{a^{2}+x^{2}}, \sqrt{x^{2}-a^{2}}, \quad a \in \mathfrak{\Re}$
a) $\sqrt{a^{2}-x^{2}} \rightarrow$ let $x=a \sin \theta \quad \theta \in[-\pi / 2, \pi / 2]$
b) $\sqrt{a^{2}+x^{2}} \rightarrow$ let $x=a \tan \theta \quad \theta \in(-\pi / 2, \pi / 2)$
c) $\sqrt{x^{2}-a^{2}} \rightarrow$ let $x=a \sec \theta \quad \theta \in[0, \pi], \theta \neq \pi / 2$

EX $3 \int \frac{x^{2}}{\sqrt{16-x^{2}}} d x$

EX $4 \quad \int_{2}^{3} \frac{d t}{t^{2} \sqrt{t^{2}-1}}$

Completing the Square (Use this strategy when there is a quadratic

 expression in the radical.)$$
\text { EX } 5 \int \frac{3 x}{\sqrt{x^{2}+4 x-5}} d x
$$

