

Integrands involving $\sqrt[n]{a x+b}$
note: this is the $n^{\text {th }}$ root of linear polynomial

$$
\begin{aligned}
& u=\sqrt{x+4} \\
& \Rightarrow u^{2}=x+4 \\
& x=u^{2}-4 \\
& d u=\frac{1}{2}(x+4)^{-1 / 2} d x \\
& 2 d u=\frac{1}{\sqrt{x+4}} d x \\
& \text { EX } 2 \int \frac{\sqrt{x}}{x+1} d x \\
& \left(\begin{array}{l}
u=\sqrt{x} \\
u^{2}=x
\end{array} \quad=\int \frac{u}{u^{2}+1}(2 u) d u\right. \\
& d u=\frac{1}{2} x^{-1 / 2} d x \\
& 2 d u=\frac{1}{\sqrt{x}} d x \\
& 2 \sqrt{x} d u=d x \quad=2 \int \frac{u^{2}+1-1}{u^{2}+1} d u \\
& 2 u d u=d x=2 \int\left(\frac{u^{2}+1}{u^{2}+1}-\frac{1}{u^{2}+1}\right) d u \\
& =2 \int\left(1-\frac{1}{u^{2}+1}\right) d u=2(u-\arctan u)+C \\
& =2(\sqrt{x}-\arctan \sqrt{x})+C
\end{aligned}
$$

Integrals involving $\sqrt{a^{2}-x^{2}}, \sqrt{a^{2}+x^{2}}, \sqrt{x^{2}-a^{2}}, \quad a \in \mathfrak{R}$
Note:
a) $\sqrt{a^{2}-x^{2}} \rightarrow l e t x=a \sin \theta$
$\theta \in[-\pi / 2, \pi / 2]$
(a) $x=a \sin \theta$
b) $\sqrt{a^{2}+x^{2}} \rightarrow$ let $x=a \tan \theta$
$\theta \in(-\pi / 2, \pi / 2)$
then
c) $\sqrt{x^{2}-a^{2}} \rightarrow$ let $x=a \sec \theta$
$\theta \in[0, \pi], \theta \neq \pi / 2 \sqrt{a^{2}-x^{2}}$

$$
=\sqrt{a^{2}-a^{2} \sin ^{2} \theta}
$$

EX $3 \int \frac{x^{2}}{\sqrt{16-x^{2}}} d x$

$$
=\sqrt{a^{2}\left(1-\sin ^{2} \theta\right)}
$$

$1 b-x^{2} \Rightarrow a=4 \quad$ (case (a)))

$$
=\sqrt{a^{2} \cos ^{2} \theta}
$$

$$
=a \cos \theta
$$

$$
\left.\begin{aligned}
& \begin{array}{l}
\text { let } x \\
x
\end{array}=4 \sin \theta \\
& \frac{d x}{d \theta}=4 \cos \theta \\
& d x=4 \cos \theta d \theta
\end{aligned} \right\rvert\,=\int \frac{(4 \sin \theta)^{2}}{\sqrt{16-(4 \sin \theta)^{2}}}(4 \cos \theta d \theta)
$$

have one leg $\sqrt{(x+2)^{2}-3^{2}}$
$\left\{\begin{aligned} &\binom{\text { cont want } \sin \theta}{11} \text { want } \sec \theta=\frac{x+2}{3} \\ &3 \tan \theta)\end{aligned} \quad \begin{array}{rl}3 \sec \theta & =x+2 \\ 3 \sec \theta-2 & =x\end{array}\right.$

$$
\begin{aligned}
& =\int \frac{(3 \sec \theta-2)}{\tan \theta}(3 \sec \theta+\operatorname{nn} \theta) d \theta \\
& \left.=3 \int(3 \sec \theta-2) \tan \theta\right) d \theta=d x \\
& =3(3) \int \sec ^{2} \theta d \theta-6 \int \sec \theta d \theta \\
& =9 \tan \theta-6 \ln |\sec \theta+\tan \theta|+c \\
& =9\left(\frac{\sqrt{(x+2)^{2}-9}}{3}\right)-6 \ln \left|\frac{x+2+\sqrt{(x+2)^{2}-9}}{3}\right|+C \\
& =3 \sqrt{x^{2}+4 x-5}-6 \ln \left|x+2+\sqrt{x^{2}+4 x-5}\right|+C
\end{aligned}
$$

note: $\ln \left|\frac{f(x)}{3}\right|=\ln |f(x)|-\ln 3$
just a constant (it can be "thrown in" with arbitrang constant C)

Conclusion
Tus forms
(1) $\sqrt[n]{\text { linear polynomial }}$ try $u=\sqrt[n]{\text { linear polynomial }}$
(2) Ting sub.
(a) $\sqrt{x^{2}-a^{2}}$
(b) $\sqrt{x^{2}+a^{2}}$
(a) $\sqrt{x^{2}-a^{2}}$
(c) $\sqrt{a^{2}-x^{2}}$
(b)
(c)

