

Trigonometric Integrals

Combining u-substitution and the trigonometric identities, we will address three forms of these integrals.

1. $\int \sin ^{n} x d x, \int \cos ^{n} x d x$
2. $\int \sin ^{m} x \cos ^{n} x d x$
3. $\int \sin (m x) \cos (n x) d x, \int \sin (m x) \sin (n x) d x, \int \cos (m x) \cos (n x) d x$

$$
\begin{aligned}
& \text { EX } 1 \int \sin ^{3} x d x \\
& =\int \sin ^{2} x(\sin x d x) \\
& \sin ^{2} x+\cos ^{2} x=1 \\
& \sin ^{2} x=1-\cos ^{2} x \\
& =\int\left(1-\cos ^{2} x\right) \sin x d x \\
& =\int \sin x d x-\int \cos ^{2} x \sin x d x \\
& =-\cos x-\int \cos ^{2} x \sin x d x \\
& u=\cos x \quad=-\cos x-\int u^{2} d u \\
& \begin{aligned}
& d u=-\sin x d x \\
&-d u=\sin x d x=-\cos x+\left(\frac{u^{3}}{3}\right)+C \\
&=-\cos x+\frac{1}{3} \cos ^{3} x+C
\end{aligned} \\
& \text { Type } 1 \\
& \text { use half - angle formulas. } \\
& \sin ^{2} x=\frac{1-\cos 2 x}{2} \\
& \cos ^{2} x=\frac{1+\cos 2 x}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex } 2 \int \cos ^{4} x d x=\int(\cos x)^{4} d x \\
& =\int \cos ^{2} x \cos ^{2} x d x \\
& =\int\left(\frac{1+\cos 2 x}{2}\right)\left(\frac{1+\cos 2 x}{2}\right) d x \\
& =\frac{1}{4} \int\left(1+2 \cos (2 x)+\cos ^{2}(2 x)\right) d x \\
& =\frac{1}{4}\left(x+2 \int \cos (2 x) d x\right)+\frac{1}{4} \int \cos ^{2}(2 x) d x \quad \text { (neven) } \\
& \int \cos (2 x) d x \\
& \begin{aligned}
u=2 x \\
d u=2 d x \\
\frac{1}{2} d u=d x
\end{aligned} \left\lvert\,=\frac{=\frac{1}{2} \cos u}{2} d u+c ~=\frac{1}{2} \sin (2 x)+c\right. \\
& \left\lvert\,=\frac{1}{4} x+\frac{1}{2}\left(\frac{1}{2} \sin (2 x)\right)\right. \\
& +\frac{1}{4} \int \frac{1+\cos (4 x)}{2} d x \\
& =\frac{1}{4} x+\frac{1}{4} \sin (2 x)+\frac{1}{8} \int(1+\cos (4 x)) d x \\
& \begin{array}{r}
=\frac{1}{4} x+\frac{1}{4} \sin (2 x)+\frac{1}{8}\left(x+\frac{\sin (4 x)}{4}\right) \\
+c
\end{array} \\
& \int \sin (m x+b) d x \\
& =-\frac{\cos (m x+b)}{m}+C \\
& \text { and } \int \cos (m x+b) d x \\
& =\frac{\sin (m x+b)}{m}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { EX } 3 \int \underbrace{\cos ^{5} x} \sin ^{-4} x d x \\
& =\int \cos x\left(\cos ^{4} x\right)(\sin x)^{-4} d x \\
& =\int \cos ^{4} x(\sin x)^{-4}(\cos x d x) \\
& \text { Type } 2 \\
& \text { If } m \text { or } n \text { is odd and positive, } \\
& \text { factor out } \sin x \text { or } \cos x \\
& \text { and use } \sin ^{2} x+\cos ^{2} x=1 \text {. } \\
& \text { If } m \text { and } n \text { are even and positive, } \\
& \text { use half - angle identities. } \\
& \text { let } u=\sin x \quad=\int\left(1-\sin ^{2} x\right)^{2}(\sin x)^{-4}(\cos x d x) \\
& \begin{aligned}
& \frac{d u=\cos x d x}{\cos ^{4} x}=\left(\cos ^{2} x\right)^{2} \\
&=\left(1-\sin ^{2} x\right)^{2}
\end{aligned}=\int\left(1-u^{2}\right)^{2} u^{-4} d u \quad=\int\left(1-2 u^{2}+u^{4}\right) u^{-4} d u \\
& =\int\left(u^{-4}-2 u^{-2}+1\right) d u \\
& =\frac{u^{-3}}{-3}-2\left(\frac{u^{-1}}{-1}\right)+u+c \\
& =\frac{-1}{3}(\sin x)^{-3}+2(\sin x)^{-1}+\sin x+c \\
& =\frac{-1}{3 \sin ^{3} x}+\frac{2}{\sin x}+\sin x+c \\
& =-\frac{1}{3} \csc ^{3} x+2 \csc x+\sin x+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { EX } 4 \int \cos ^{2} x \sin ^{4} x d x \\
& =\int \cos ^{2} x \sin ^{2} x \sin ^{2} x d x \\
& =\int\left(\frac{1+\cos (2 x)}{2}\right)\left(\frac{1-\cos (2 x)}{2}\right)\left(\frac{1-\cos (2 x)}{2}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{8} \int(1-\cos (2 x)) d x-\frac{1}{8} \int \underbrace{\cos ^{2}(2 x) d x}_{\text {Typel }}+\frac{1}{8} \int \underbrace{\cos ^{3}(2 x) d x}_{\text {Type 1 }} \\
& =\frac{1}{8}\left(x-\frac{\sin (2 x)}{2}\right)-\frac{1}{8} \int \frac{1+\cos (4 x)}{2} d x+\frac{1}{8} \int \cos ^{2}(2 x)(\cos 2 x d x) \\
& =\frac{1}{8} x-\frac{1}{16} \sin (2 x)-\frac{1}{16} \int(1+\cos (4 x)) d x+\frac{1}{8} \int\left(1-\sin ^{2}(2 x)\right) \cos (2 x) d x \\
& =\frac{1}{8} x-\frac{1}{16} \sin (2 x)-\frac{1}{16} x-\frac{1}{16}\left(\frac{\sin (4 x)}{4}\right) \\
& +\frac{1}{8} \int \cos (2 x) d x-\frac{1}{8} \int \sin ^{2}(2 x) \cos (2 x) d x \\
& =\frac{1}{16} x-\frac{1}{16} \sin (2 x)-\frac{1}{64} \sin (4 x) \\
& +\frac{1}{8}\left(\frac{\sin (2 x)}{2}\right)-\frac{1}{8}\left(\frac{1}{2}\right) \int u^{2} d u \\
& u=\sin (2 x) \\
& d u=\cos (2 x)(2) d x \\
& \frac{1}{2} d u=\cos (2 x) d x \\
& =\frac{1}{16} x-\frac{1}{16} \sin (2 x)-\frac{1}{64} \sin (4 x) \\
& +\frac{1}{16} \operatorname{sig}(2 x)-\frac{1}{16}\left(\frac{u^{3}}{3}\right)+c \\
& =\frac{1}{16} x-\frac{1}{64} \sin (4 x)-\frac{1}{48}\left(\sin ^{3}(2 x)\right)+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { EX } 5 \int \sin (4 x) \cos (5 x) d x \\
& \text { Type } 3 \\
& \text { Use product identities: }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{18} \cos (9 x)+\frac{1}{2} \cos (-x)+c=\frac{-1}{18} \cos (9 x)+\frac{1}{2} \cos x+c \\
& \text { EX } 6 \int_{-4}^{4} \underbrace{\sin \left(\frac{m \pi x}{4}\right) \sin \left(\frac{n \pi x}{4}\right)}_{\text {even ff }} d x \\
& A=2 \int_{0}^{4} \sin \left(\frac{n \pi x}{4}\right) \sin \left(\frac{n \pi x}{4}\right) d x
\end{aligned}
$$

Two cases: (1) $m \neq n$
(2) $m=n$

$$
\begin{aligned}
\text { Case } & (m+n) \pi=\frac{2}{2} \int_{0}^{4}\left[\cos \left(\frac{(m+n) \pi x}{4}\right)-\cos \left(\frac{(n-n) \pi x}{4}\right)\right] d x \\
= & \int_{0}^{4}\left[\cos \left(\frac{(n+n) \pi}{4} x\right)-\cos \left(\frac{(m-n) \pi}{4} x\right)\right] d x \\
= & \left.\left(\frac{\sin \left(\frac{(m+n) \pi}{4} x\right)}{\frac{(m+n) \pi}{4}}-\frac{\sin \left(\frac{(m-n) \pi}{4} x\right)}{\frac{(m-n) \pi}{4}}\right)\right|_{0} ^{4} \\
= & \left(\frac{\sin ((m+n) \pi)}{\frac{(m+n) \pi}{4}}-\frac{\sin \left(\frac{(m-n) \pi)}{(m-n) \pi}\right.}{4}\right)-0\binom{\text { because }}{\sin 0=0}
\end{aligned}
$$

(note: if $m, n \in \mathbb{Z}$

Case 2: $m=n$

$$
\begin{aligned}
A & =2 \int_{0}^{4} \sin ^{2}\left(\frac{n \pi x}{4}\right) d x \\
& =2\left(\frac{1}{2}\right) \int_{0}^{4}\left(1-\cos \left(\frac{n \pi x}{2}\right)\right) d x \\
& =\left.\left(x-\frac{\sin \left(\frac{n \pi x}{2}\right)}{\frac{n \pi}{2}}\right)\right|_{0} ^{4} \\
& =\left(4-\frac{\sin (2 n \pi)}{\frac{n \pi}{2}}\right)-(0) \\
& =4-\frac{2 \sin (2 n \pi)}{n \pi}
\end{aligned}
$$

(need half identity)
note: if $n \in \mathbb{Z}$, then $\sin (2 n \pi)=0$

In Conclusion integrals of trig. fins.

Type 1, Type 2, Type 3
all use (1) Pythagore an identity
or (2) Half-angle formulas
or 3 Product-to-Sum identities

