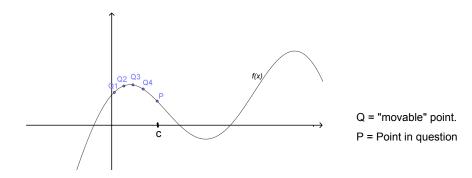

8 Two Problems One Theme

It took me 6 hours to drive 400 miles. As I drove I wrote the mileage on the trip-o-meter each half hour. Here is a graph of my trip.

What was my average velocity for the trip? v_{av} =


What was my average velocity for the first half of the trip?

How fast was I going at t=2? $v_{inst}=$

8 Two Problems One Theme

Archimedes - slope of a tangent line.

Kepler, Galileo, Newton - Instantaneous velocity.

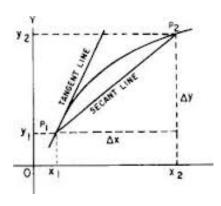
secant line⇒ line through P and Q.

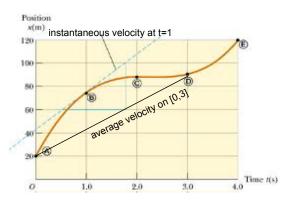
tangent line⇒ limiting position (if it exists) of secant line as Q moves closer to P along the curve.

slope of secant line

slope of tangent line

EX 1 Find the slope of $y = -x^2 + 3x$ when x = -1, 2, and 5.


EX 2 Find the equation of the tangent line to $y = \frac{2}{x}$ at x=1.


8 Two Problems One Theme

Geometrically finding the slope of a tangent line to a curve is exactly the same as finding the instantaneous velocity for a moving object.

- EX 3 An object travels along a line so that its position is given by $s(t)=t^2+1$ (measured in meters, t measured in seconds.)
 - a) What is its average velocity on the interval 2≤t≤3?
 - b) Average velocity on 2≤t≤2.003?
 - c) Average velocity on 2≤t≤2+h?
 - d) Instantaneous velocity at t=2?

"Rate of change" means instantaneous rate of change.

