

Two Problems, One Theme

It took me 6 hours to drive 400 miles. As I drove I wrote the mileage on the trip-o-meter each half hour. Here is a graph of my trip.

 What was my average velocity for the first half of the trip? $V_{\text {half }}=\frac{170 \mathrm{mi}}{3 \mathrm{hr}}=56.5 \mathrm{mi} / \mathrm{m}$
How fast was lgoing at $t=2$? $V_{\text {inst }}=$?

$$
\begin{aligned}
& \text { close, approx } \\
& V_{\text {inst }}=\frac{112-110 \mathrm{mi}}{2.1-2} \frac{2}{\mathrm{mr}_{r}}=\frac{2}{0.1}=20 \mathrm{mg} / \mathrm{hr}_{r}
\end{aligned}
$$

Archimedes - slope of a tangent line.
Kepler, Galileo, Newton - Instantaneous velocity.

Q = "movable" point.
$P=$ Point in question
secant line \Rightarrow line through P and Q.
tangent line \Rightarrow limiting position (if it exists) of secant line as Q moves closer to P along the curve.
slope of secant tine $m_{\text {sec }}=\frac{f(x+h)-f(x)}{x+h-x}=\frac{f(x+h)-f(x)}{h}$
slope of fangent ine $m_{\tan }=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

EX 1 Find the slope of $y=-x^{2}+3 x$ when $x=-1,2$, and 5 . (find slope formula;

$$
\begin{aligned}
& \begin{aligned}
m_{\text {tan }}=f^{\prime}(x) & \left.=\lim _{h \rightarrow 0} \frac{-(x+h)^{2}+3(x+h)-\left(-x^{2}+3 x\right)}{h} \quad \text { the derivative }\right) \\
& =\lim _{h \rightarrow 0} \frac{-x^{2}-2 x h-h^{2}+3 x+3 h+x^{2}-3 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(-2 x-h+3)}{h}=\lim _{h \rightarrow 0}(-2 x-h+3)
\end{aligned} \\
& \text { at } x=-1, m=f^{\prime}(-1)=-2(-1)+3=5=-2 x+3 \quad \text { for mule; } \\
& \text { at } x=2, m=f^{\prime}(2)=-2(2)+3=-1 \quad \text { at } x-5, f^{\prime}(5)=-2(3)+3 \\
& \text { EX 2 Find the equation of the tangent line to } y=\frac{2}{x} \text { at } x=1 .
\end{aligned}
$$

we need a pt and a slope, to find egn
pt: $(1,2) y=\frac{2}{1}=2$ of line

$$
\begin{aligned}
f^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{\frac{2}{x+h}-\frac{2}{x}}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\left(\frac{2}{x+h}\left(\frac{x}{x}\right)-\frac{2}{x}\left(\frac{x+h}{x+h}\right)\right)\right. \\
= & \lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{2 x-2(x+h)}{x(x+h)}\right) \\
= & \lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{2 x-2 x-2 h}{x(x+h)}\right) \\
= & \lim _{h \rightarrow 0} \frac{-2 h}{h x(x+h)}=\lim _{h \rightarrow 0} \frac{-2}{x(x+h)} \\
& =\frac{-2}{x(x+0)}
\end{aligned}
$$

$\begin{aligned} \text { slope at } x & =1\end{aligned} \quad f^{\prime}(x)=\frac{-2}{x^{2}}$

$$
\begin{aligned}
& m=f^{\prime}(1)=\frac{-2}{1^{2}}=-2 \\
& \text { pt }(1,2), m=-2
\end{aligned}
$$

$$
y-2=-2(x-1)
$$

$\begin{aligned} & y-2=-2 x+2 \\ & y=-2 x+4 \text { en of tangent line to } \\ & \text { curve at } x=1\end{aligned}$ curve at $x=1$

Geometrically finding the slope of a tangent line to a curve is exactly the same as finding the instantaneous velocity for a moving object.

EX 3 An object travels along a line so that its position is given by $s(t)=t^{2}+1$ (measured in meters, t measured in seconds.)
a) What is its average velocity on the interval $2 \leq t \leq 3$?

$$
\begin{aligned}
V_{a v}=\frac{\text { dist }}{\text { time }}=\frac{s(3)-s(2)}{3-2} & =\frac{\left(3^{2}+1\right)-\left(2^{2}+1\right)}{1} \\
& =5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b) Average velocity on $2 \leq t \leq 2.003$?

$$
\begin{aligned}
& \text { Verge velocity on 2st202003? } \\
& V_{\text {av }}=\frac{(2.003)-s(2)}{2.003-2}=\frac{\left(2.003^{2}+1\right)-\left(2^{2}+1\right)}{0.003} \approx \frac{.011^{-5}}{0.003}
\end{aligned}
$$

c) Average velocity on $2 \leq t \leq 2+h$?

$$
\begin{aligned}
\begin{aligned}
V=\frac{s(2+h)-s(2)}{2+h-2}=\frac{(2+h)^{2}+1-\left(2^{2}+1\right)}{h} & =\frac{41+4+h^{2}+6-14-1 /}{0} \\
& =\frac{h(4+h)^{2}}{h}=(4+h)^{\frac{3}{s}}
\end{aligned}
\end{aligned}
$$

$$
V_{\text {hist }}=\lim _{h \rightarrow 0}(4+h)=4 \mathrm{~m} / \mathrm{s}
$$

"Rate of change" means instantaneous rate of change.

