6B Continuity

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Continuity

(continuity means we can draw Definition: Continuity at a Point graph of $f(x)=y$ w/ one swype)

Let f be defined on an open interval containing c. We say that f is continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

This indicates three things:

1. The function is defined at $x=c$. i.e. $f(c)$ exists
2. The limit exists at $x=c$. i.e. $\lim _{x \rightarrow c} f(x)$ exist ts
3. The limit at $x=c$ needs to be exactly the value of the function at $x=c$. Three examples:

$$
\lim _{x \rightarrow C} f(x)=f(c) .
$$

discontinuous at $x>c$.
$f(c)$ exists
but $\lim _{x \rightarrow c} f(x) D N E$
fails conditn (2)

discontinuity
at $x=c$
fec) exists

$$
\lim _{x \rightarrow c} f(x) \text { exists }
$$

(4)

$$
\begin{aligned}
& f(c) \text { exists } \\
& \lim _{x \rightarrow c} f(x) \text { exists }
\end{aligned}
$$

$$
\lim _{x \rightarrow c} f(x) \neq f(c)
$$

$$
x \rightarrow c
$$

$$
\lim _{x \rightarrow c} f(x)-f(c)
$$

discontinuous
at $x=c$
$\lim _{x \rightarrow c} f(x)$ exists

$$
b_{\text {ut }}^{x \rightarrow c} f(c) \text { ONE }
$$

Continuous Functions
a) All polynomial functions are continuous everywhere.
b) All rational functions are continuous over their domain.
c) The absolute value function is continuous everywhere.
d) $f(x)=\sqrt[n]{x}$ is continuous for all real numbers if n is odd.
e) $f(x)=\sqrt[n]{x}$ is continuous for all non-negative real numbers if n is even.
f) The sine and cosine functions are continuous over all real numbers.
g) The cotangent, cosecant, secant and tangent functions are continuous over their domain.

More continuous functions
If $f(x)$ and $g(x)$ are continuous at $x=c$, then so are

$$
\frac{k f(x),(f \pm g)(x),(f g)(x), \quad \frac{f}{g}(x),(g(x) \neq 0)}{f^{n}(x), \sqrt[n]{f(x)},(f(c)>0 \text { if niseven })}
$$

arithmetic
combinations of cont. frs are also cont.

EX 1 State where these functions are continuous.
a) $f(x)=x^{2}-9 \quad$ (polynomial) continuous everywhere
b) $g(x)=\sqrt{x-5}$ (i) $x \in \mathbb{R}$ or (ii) $(-\infty, \infty)$
wed $x-5 \geq 0 \Leftrightarrow x \geq 5$ or
c) $h(x)=\frac{21-7 x}{x-3} \quad$ (ii) $[5, \infty)$
need $x-3 \neq 0=x \neq 3, \begin{aligned} & x, \\ & (-\infty, 3) \cup\end{aligned}$
d) $p(x)= \begin{cases}7-3 x & x \leq 3 \\ -2 & x>3\end{cases}$
(piecewise f_{n})
each piece is polynomial
\Rightarrow continuous everywhere, except possibly where the pieces "meet".

C Common Domain
Restrictions
(1) cannot divide by zero
(2) cannot take even root of negative \#
(3) cannot take \log of a nonpositive \#
(4) (possible problem when continuity) where pieces of piecewise for meet

$$
p(3)=7-3(3)=7-9=-2
$$

$$
\lim _{x \rightarrow 3^{+}} p(x)=-2
$$

(bottom fica)
\Rightarrow fr cont at $x=$? \Rightarrow cont. $^{\text {(i) }} x \in \mathbb{R}$ (ii) $(-\infty, \infty)$

Composite Limit Theorem
If $\lim _{x \rightarrow c} g(x)=L$ and f is continuous at L, then
$\lim _{x \rightarrow c} f(\underbrace{g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)=f(L)}$
Ex 2 At what points are the following functions continuous?
a) $h(x)=\frac{1}{\sqrt{4+x^{2}}} \quad 4+x^{2} \geq 0$ for all x
$\begin{aligned} 4+x^{2} & \neq 0 \Rightarrow \text { so there are no problems } \\ & \Rightarrow \text { and }\end{aligned}$
b) $g(t)=|t-2|$
\Rightarrow cont. everywhere.
continuous (i) $x \in \mathbb{R}$ or (ii) $(-\infty, \infty)$
evengw here
(i) $t \in \mathbb{R}$ or (ii) $(-\infty, \infty)$

Ex 3 If $f(x)=\frac{x^{2}-49}{x-7}$, how do we need to complete the definition for this to be continuous everywhere?
not: night now, it has discount. ph at $x=7$.
$\lim x^{2}-49$
$(f(7) \triangle N E)$
$(x-74)(x+7)$

by making such that $f(c)=\omega$.

in red exists

Use interval notation to state all values for which this function is continuous.

but $f(-8) \neq \lim _{x \rightarrow-8} f(x)$
cont on

$$
\begin{gathered}
(-\infty,-8) \cup(-8,-2) \\
\cup(-2,6) \\
\cup(6, \infty)
\end{gathered}
$$

discontinuous at $x=-8,-2,6$

