

The Squeeze Theorem

4.5B Squeeze Theorem

Squeeze Theorem

Let f, g, h be functions satisfying $f(x) \leq g(x) \leq h(x)$ for every x near c, except possibly at $x=c$.
If $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L$, then $\quad \lim _{x \rightarrow c} g(x)=L$

Note: Most frequently used $\omega /$
trig fris, line $\sin x$ or $\cos x$.

Ex 1 Use the squeeze theorem to determine this limit.

blue curve is "squeezed" between the two red cures

$$
\begin{aligned}
0 \leq \lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right) & \leq 0 \\
& \Rightarrow \lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)-0 .
\end{aligned}
$$

