

Definition: (Limit as  $x \rightarrow \infty$  )

is defined on [c, $\infty$ ) for c  $\in$  R

We say that if for every  $\varepsilon > 0$  there is a corresponding number, *m* such that



EX 1 Intuitively (looking at the graph) determine these limits.



EX 2 Show that if *n* is a positive integer, then  $\lim_{x\to\infty} \frac{1}{x^n} = 0$ .

EX 3 
$$\lim_{x \to \infty} \frac{2x+3}{x^2+1} =$$

EX 4 
$$\lim_{x \to \infty} \frac{3x^4 - 2x^3 + 53}{x^3 + 7} =$$

#X 5 
$$\lim_{x \to \infty} \frac{2x^2 + 5x - 1}{x^2 + 3x} =$$

Definition: (Infinite limit)

We say  $\lim_{x \to c^+} f(x) = \infty$  if for every positive number, m there is a corresponding  $\delta > 0$  such that  $0 < x - c < \delta \Longrightarrow f(x) > m$ 





Ex 8 a) Find the vertical and horizontal asymptotoes for this function.

$$f(x) = \frac{2x}{\sqrt{x^2 + 5}}$$

b) Determine these limits:

$$\lim_{x\to\infty}f(x)=\lim_{x\to\sqrt{5}^+}f(x)=$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to \sqrt{5}^{-}} f(x) =$$

Determine these limits:

$$\lim_{x \to \infty} f(x) =$$

$$\lim_{x \to \infty} f(x) =$$

$$\lim_{x \to 0^+} f(x) =$$

$$\lim_{x \to 0^-} f(x) =$$

$$\lim_{x \to 0^-} f(x) =$$

$$\lim_{x \to 0^-} f(x) =$$