

Limits At Infinity, Infinite Limits

4B Limits at Infinity

Definition: (Limit as $x \rightarrow \infty$)

$$
f(x) \text { is defined on }[c, \infty) \quad c \in \Re \quad \text { (or }(-\infty, c])
$$

We say that if for every $\varepsilon>0$ there is a corresponding number, m such that

EX 1 Intuitively (looking at the graph) determine these limits.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=1 \\
& \lim _{x \rightarrow-\infty} f(x)=0
\end{aligned}
$$

EX 2 Show that if n is a positive integer, then $\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0$. Let $\varepsilon>0$ be given. choose $m=\left(\frac{1}{\frac{1}{2}} \frac{1}{\frac{1}{n}}\right.$
$=\sqrt[n]{\frac{1}{\varepsilon}}$.
Then $x>m \underset{\Leftrightarrow}{\Rightarrow} \frac{x^{n}}{x^{n} m^{n}} \frac{m^{n}}{x^{\prime} m^{n}}$

$$
\text { So } \begin{aligned}
\left|\frac{1}{x^{2}}-0\right|=\left|\frac{1}{x^{n}}\right|<\frac{1}{m^{n}}=\frac{1}{\left(\sqrt{\frac{1}{\varepsilon}}\right)^{n-n}}=\frac{1}{1^{\prime}} \\
=\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \text { ide. }\left|\frac{1}{x^{n}}-0\right|<\varepsilon \text {. anition } \\
& \Rightarrow \text { by deft } \\
& \lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0 \\
& \left(n \in \mathbb{Z}^{+}\right)
\end{aligned}
$$

4B Limits at Infinity
Ex 3 $\lim _{x \rightarrow \infty} \frac{2 x+3}{x^{2}+1}=\lim _{x \rightarrow \infty}\left(\frac{2 x+3}{x^{2}+1}\right)\left(\frac{1 / x^{2}}{1 / x^{2}}\right)$

EX 4 $\lim _{x \rightarrow \infty} \frac{3 x^{4}-2 x^{3}+53}{x^{3}+7}=\lim _{x \rightarrow \infty} \frac{3 x^{4}}{x^{3}} \longrightarrow \frac{\text { Note of warning: }}{\text { This shoran }}$

$$
=\lim _{x \rightarrow \infty} 3 x \rightarrow \infty
$$

This shortcut works only when we have limit as $x \rightarrow \pm \infty!!!$
EX 5

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x^{2}+5 x-1}{x^{2}+3 x} & =\lim _{x \rightarrow \infty} \frac{2 x^{2}}{x^{2}} \\
& =\lim _{x \rightarrow \infty} 2=2
\end{aligned}
$$

Limits of Rational Fir as $x \rightarrow \pm \infty$
(1) if degree of $n(x)<\quad \left\lvert\, \lim _{x \rightarrow+\infty} \frac{n(x)}{d(x)}\right.$ degree of $d(x)$, then

$$
\lim _{x \rightarrow+\infty} \frac{n(x)}{d(x)}
$$

limit goes to 0 .
(2) if degree of $n(x)>$ degree of $d(x)$, then limit goes to $\pm \infty$ (have to look at coefficients of leading terms)
(3) if degree of $h(x)=$ degree of $d(x)$, then limit is quotient of the leading wefficients.

4B Limits at Infinity

Definition: (Infinite limit)
We say $\lim _{x \rightarrow c^{+}} f(x)=\infty$ if for every positive number, m when x is close to c there is a corresponding $\delta>0$ such that $0<x-c<\delta \Rightarrow f(x)>m \rightarrow f(x)$ keeps $\left(x \rightarrow c^{+}\right.$: means x is going to c from the right)

4B Limits at Infinity

EX 6 Determine these limits looking at this graph of $f(x)=\frac{1}{x-1} \cdot$ (VA at
(2)
 $x=1$)

Ex 7 Find the horizontal and vertical asymptotes for this function, then write a few limit statements including ∞.

$$
f(x)=\frac{-2 x}{x+3}
$$

VA: of form $x=c, c$ is a constant (the graph of $y=f(x)$ can never cross or touch the VA)
find it by looking at domain restrictions $f(x)$ has problem at $x=-3$ (make den.
$z(w)$)

$$
\begin{aligned}
& \Rightarrow V A: \quad x=-3 \quad \text { (domain: } x \in \mathbb{R}, x \neq-3 \text {) } \\
& \lim _{x \rightarrow-3^{+}} \frac{-2 x}{x+3}=\infty^{\text {test: } \quad x=-2.9 \quad \frac{+}{+} \quad \vdots} \\
& \lim _{x \rightarrow-3^{-}} \frac{-2 x}{x+3}=-\infty^{\text {test: }} \quad x=-3.1 \quad \pm \quad \vdots
\end{aligned}
$$

HA: horiz. line that fin approaches, eventually (as x gets huge)

$$
\begin{gathered}
y=\lim _{x \rightarrow \pm \infty} f(x) \\
y=\lim _{x \rightarrow \infty} \frac{-2 x}{x+3}=\lim _{x \rightarrow+\infty} \frac{-2 x}{x}=-2 \Rightarrow H A: \quad y=-2
\end{gathered}
$$

Ex 8 a) Find the vertical and horizontal asymptotes for this function.
$f(x)=\frac{2 x}{\sqrt{x^{2}+5}}$
b) Determine these limits:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)= \\
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{x^{2}}} \\
&= \lim _{x \rightarrow-\infty} \frac{2 x}{-x} \\
&= \lim _{x \rightarrow-\infty}-2 \\
&=-2 \\
& \Rightarrow H A: y=-2
\end{aligned}
$$

$$
H A: \lim _{x \rightarrow \infty} \frac{2 x}{\sqrt{x^{2}+5}}
$$

$$
=\lim _{x \rightarrow \infty} \frac{2 x}{\sqrt{x^{2}}}=\lim _{x \rightarrow \infty} \frac{2 x}{x}
$$

$$
=\lim _{x \rightarrow \infty} 2=2
$$

$$
\Rightarrow H A: y=2
$$

Note: $\sqrt{x^{2}}=|x|= \begin{cases}x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0\end{cases}$
ex $\sqrt{(-5)^{2}}=5$

Note: $H A(s)$ describe behavior of y-value as x gets huge!!!
(we can coss the HA as many times as in requires when x is not "huge")

Determine these limits:

