

We say that if for every $\varepsilon > 0$ there is a corresponding number, *m* such that

4B Limits at Infinity

Ex3
$$\lim_{x \to \infty} \frac{2x+3}{x^2+1} = \lim_{x \to \infty} \frac{2x+3}{x+1} \frac{1}{x+1} \frac{1}{x}$$

We have $\lim_{x \to \infty} \frac{2x+3}{x^2+1} = \lim_{x \to \infty} \frac{2x}{x} - \lim_{x \to \infty} \frac{2}{x} = 0$
 $\lim_{x \to \infty} \frac{2x+3}{x^2+1} = \lim_{x \to \infty} \frac{2x}{x} - \lim_{x \to \infty} \frac{2}{x} = 0$
Ex4 $\lim_{x \to \infty} \frac{3x^4-2x^3+53}{x^3+7} = \lim_{x \to \infty} \frac{3x^4}{x^2}$
 $= \lim_{x \to \infty} 3x \to 100$
Ex5 $\lim_{x \to \infty} \frac{2x^2+5x-1}{x^2+3x} = \lim_{x \to \infty} \frac{2x^2}{x}$
 $= \lim_{x \to \infty} 2 = 2$
Limits of Rational Fins as $x \to \pm \infty$
(1) if degree of $n(x) < \lim_{x \to \pm \infty} \frac{1}{x^2+2} = \frac{$

4B Limits at Infinity

Ex 7 Find the horizontal and vertical asymptotes for this function,

then write a few limit statements including ∞ . $f(x) = \frac{-2x}{x+3}$

VA: of form X=C, c is a constant
(the graph of y=f(x) can never cross or
touch the VA)
find it by looking domain restrictions
f(x) has problem at x=-3 (make den.
e(x))
=> VA: x=-3 (domain: xell, x+-3)
lim
$$\frac{-2x}{x+3} = \frac{+x+1}{x+3} = \frac{+}{x+3} = \frac{+}$$

Ex 8 a) Find the vertical and horizontal asymptotes for this function.

$f(x) = \frac{2x}{\sqrt{x^2 + 5}}$	VA: (domain restrictions) none
b) Determine these limits:	HA: $\lim_{X \to \infty} \frac{2x}{\sqrt{x^2+5}}$
$\lim_{x\to\infty}f(x)=$	
$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2}}$	$= \lim_{X \to \infty} \frac{2x}{\sqrt{X^2}} = \lim_{X \to \infty} \frac{2x}{x}$
= lm 2/x x->->> -x	= lim 2 = Z =) [HA: y=2]
$= \lim_{x \to \infty} -2$	$\frac{10012}{10012}$. $\sqrt{x^2} = x = \int x$, if x20
=-2 HA: y=-2	Note: $\sqrt{x^2} = x = \int x$, if $x \ge 0$ ex $\sqrt{ES} = S$
Note: HA (s) descri	be behavior of y-value
as x gets	huge!!!
(we can cross t	he HA as many times as
th require	he HA as many times as s when x is not "huge")

