

Calculus: 3 ~ Limit Theorems

$\lim _{x \rightarrow 1} f(x)-g(x)=?$

Limit Theorems

n is a positive integer.

1) $\lim _{x \rightarrow c} k=k$
k is a real number
$f(x) \& \quad g(x)$ have limits as $x \rightarrow c$
2) $\lim _{x \rightarrow c} x=c$
3) $\lim _{x \rightarrow c}[k f(x)]=k \lim _{x \rightarrow c} f(x)$
4) $\lim _{x \rightarrow c}[f(x) \pm g(x)]=\lim _{x \rightarrow c} f(x) \pm \lim _{x \rightarrow c} g(x)$
5) $\lim _{x \rightarrow c}[f(x) g(x)]=\lim _{x \rightarrow c} f(x) \lim _{x \rightarrow c} g(x)$
6) $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}, \quad g(x) \neq 0$
7) $\lim _{x \rightarrow c}[f(x)]^{n}=\left[\lim _{x \rightarrow c} f(x)\right]^{n}$
8) $\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow c} f(x)}$, if $\lim _{x \rightarrow c} f(x)>0 \quad$ when n is even.

$$
\text { EX } 1 \quad \lim _{x \rightarrow 2}\left(4 x^{2}-2 x+1\right)
$$

$$
\text { EX } 2 \quad \lim _{x \rightarrow-3} \frac{\sqrt{x^{2}-1}}{2 x}
$$

$$
\begin{aligned}
& \text { EX } 3 \text { If } \quad \lim _{x \rightarrow a} f(x)=3 \text { and } \lim _{x \rightarrow a} g(x)=-1, \\
& \text { find } \lim _{x \rightarrow a} \frac{2 f(x)-3 g(x)}{f(x)+g(x)}
\end{aligned}
$$

Substitution Theorem

If $f(x)$ is a polynomial or a rational function, then $\lim _{x \rightarrow c} f(x)=f(c)$ assuming $f(c)$ is defined.

$$
\text { Ex } 4 \quad \lim _{x \rightarrow-1} \frac{3 x^{2}-4 x^{3}+7 x-5}{2 x^{2}+3 x+4}
$$

$$
\text { Ex } 5 \quad \lim _{x \rightarrow 2} \frac{3 x^{3}+4 x+1}{x^{2}-x-2}
$$

EX $6 \quad \lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} f(x)= \\
& \lim _{x \rightarrow 1} g(x)= \\
& \lim _{x \rightarrow 1} f(x)-g(x)=?
\end{aligned}
$$

