

Calculus: 3 ~ Limit Theorems

$$
\lim _{x \rightarrow 1} f(x)-g(x)=?
$$

Limit Theorems

-1) $\lim _{x \rightarrow c} k=k$

2) $\lim _{x \rightarrow c} x=c$
3) $\lim _{x \rightarrow c}[k f(x)]=k \lim _{x \rightarrow c} f(x)$
limits can be
4) $\lim _{x \rightarrow c}[f(x) \pm g(x)]=\lim _{x \rightarrow c} f(x) \pm \lim _{x \rightarrow c} g(x)$
5) $\lim _{x \rightarrow c}[f(x) g(x)]=\lim _{x \rightarrow c} f(x) \lim _{x \rightarrow c} g(x)$
6) $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}, \quad g(x) \neq 0$
7) $\lim _{x \rightarrow c}[f(x)]^{n}=\left[\lim _{x \rightarrow c} f(x)\right]^{n}$
exchanged in
order w/ almost any other

the limit exists
8) $\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow c} f(x)}$, if $\lim _{x \rightarrow c} f(x)>0 \quad$ when n is even.

$$
\text { EX 1 } \quad \begin{array}{r}
\lim _{x \rightarrow 2}\left(4 x^{2}-2 x+1\right)=4\left(\lim _{x \rightarrow 2}(x)\right)^{2}-2\left(\lim _{x \rightarrow 2} x\right)+\lim _{x \rightarrow 2} 1 \\
=4\left(2^{2}\right)-2(2)+1=16-4+1 \\
=13
\end{array}
$$

$$
\text { Ex 2 } \begin{aligned}
& \lim _{x \rightarrow-3} \frac{\sqrt{x^{2}-1}}{2 x} \\
= & \frac{\sqrt{\left(\lim _{x \rightarrow-3} x\right)^{2}-\lim _{x \rightarrow-3} 1}}{2\left(\lim _{x \rightarrow-3} x\right)}=\frac{\sqrt{(-3)^{2}-1}}{2(-3)}
\end{aligned}=\frac{\sqrt{8}}{-6} .
$$

$$
\text { EX } 3 \text { If } \lim _{x \rightarrow a} f(x)=3 \text { and } \lim _{x \rightarrow a} g(x)=-1 \text {, }
$$

find $\lim _{x \rightarrow a} \frac{2 f(x)-3 g(x)}{f(x)+g(x)}$

$$
\begin{aligned}
=\frac{2 \lim _{x \rightarrow a} f(x)-3 \lim _{x \rightarrow a} g(x)}{\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)} & =\frac{2(3)-3(-1)}{3+-1} \\
& =\frac{9}{2}
\end{aligned}
$$

3B Limit Theorems

Substitution Theorem
If $f(x)$ is a polynomial or a rational function, then $\lim _{x \rightarrow c} f(x)=f(c)$ assuming $f(c)$ is defined.

Ex 4 $\quad \lim _{x \rightarrow-1} \frac{3 x^{2}-4 x^{3}+7 x-5}{2 x^{2}+3 x+4}=\frac{3(-1)^{2}-4(-1)^{3}+7(-1)-5}{2(-1)^{2}+3(-1)+4}$ $=\frac{3+4-7-5}{2-3+4}=\frac{-5}{3}$
Ex 5 $\lim _{x \rightarrow 2} \frac{3 x^{3}+4 x+1}{x^{2}-x-2}$ DNE (does not exist)

$$
\left.\begin{array}{c}
\left(\frac{3\left(2^{3}\right)+4(2)+1}{2^{2}-2-2}\right. \\
=\frac{33}{0} \text { sase }
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Ex 6 } \begin{aligned}
\left(\frac{\sqrt{0+1}-1}{\lim _{x \rightarrow 0}} \frac{\sqrt{x+1}-1}{x}=\frac{0}{0} \text { case }\right) \quad\left(\begin{array}{l}
\frac{0}{0} \text { case means we } \\
\text { have more work to do }
\end{array}\right. \\
=\lim _{x \rightarrow 0} \frac{(\sqrt{x+1}-1)}{x}\left(\frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}\right) \\
=\lim _{x \rightarrow 0} \frac{(x+x)-x}{x(\sqrt{x+1}+1)}=\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+1}+1)} \\
=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+1}+1}=\frac{1}{\sqrt{1}+1} \\
=\frac{1}{2}
\end{aligned}
\end{aligned}
$$

3B Limit Theorems

$$
\begin{aligned}
& \lim _{x \rightarrow 1} f(x)=1 \\
& \lim _{x \rightarrow 1} g(x)=2 \\
& \lim _{x \rightarrow 1} f(x)-g(x)=? \quad \mid-2=-1
\end{aligned}
$$

