
"teeter totter"

It stays balanced if

$$
m_{1} d_{1}=m_{2} d_{2}
$$

Let's put fulchem at origin on ax x-axis.

for balance $m_{1} x_{1}+m_{2} x_{2}=0$

* X_{1}, x_{2} are derected distances

The moment of a particle with respect to a point is the product of mass (m) of the particle with its directed distance (x) from a point. This measures the tendency to produce a rotation about that point.

$x=$ distance
from, O to particle
$m_{i}=$ mass of particle i

Where does the fulcrum need to be placed to balance? Let's call it \bar{x}.
 have n particles)
on x-axis for balance, we need

$$
\left(x_{1}-\bar{x}\right) m_{1}+\left(x_{2}-\bar{x}\right) m_{2}+\left(x_{3}-\bar{x}\right) m_{3}+\ldots+\left(x_{n}-\bar{x}\right) m_{n}=0
$$

we are looking for formula for \bar{x}.

$$
\begin{aligned}
& x_{1} m_{1}+x_{2} m_{2}+x_{3} m_{3}+\cdots+x_{n} m_{n}=\bar{x} m_{1}+\bar{x} m_{2}+\bar{x} m_{3}+\ldots+\bar{x} m_{n} \\
& \sum_{i=1}^{n} x_{i} m_{i}=\bar{x} \sum_{i=1}^{n} m_{i}
\end{aligned}
$$

location of fulcrum for balance in a $1-\alpha$ discrete case

EX 1
John and Mary, weighing 180 lbs and 110 lbs respectively, sit at opposite ends of a 12-ft teeter-totter with the fulcrum in the middle. Where should their $50-\mathrm{lb}$ son sit in order for the board to balance?

50
 for balance we ned

$$
\begin{aligned}
& 180(-6)+50 x+110(6)=0 \\
& 50 x=420 \\
& x=8.4
\end{aligned}
$$

\Rightarrow this says son must be 8.4 ft to right of fulcrum; that means he is not on teeter totter
ie. there's no way to get balance on this teeter totter
let's say son weighs 80 lbs instead.
we get: $\quad 180(-6)+80 x+110(6)=0$

$$
\begin{aligned}
& 80 x=420 \\
& x=\frac{42}{8}=5.25 \mathrm{ft}
\end{aligned}
$$

For a continuous mass distribution along the line (like on a wire):

$$
\bar{x}=\frac{m}{m}=\frac{\int_{a}^{b} x \delta(x) d x}{\int_{a}^{b} \delta(x) d x}
$$

since total mass is
($\delta(x)$ is density f_{n}) units: mass/distance

4 moment is $\int_{a}^{b} \delta(x) x d x$
same as discrete case,

except we swap finite sums for integrals

$$
\underbrace{\delta(x) d x}_{a \text { bit of mass }} \Rightarrow \text { total mass }=\int_{a}^{b} \delta(x) d x
$$

EX 2
A straight wire 7 units long has density $\delta(x)=1+x^{3}$ at a point x units from one end. Find the distance from this end to the center of mass.

total mass:

$$
\begin{aligned}
m & =\int_{0}^{7}\left(1+x^{3}\right) d x \\
& =\left.\left(x+\frac{x^{4}}{4}\right)\right|_{0} ^{7} \\
& =\left(7+\frac{7^{4}}{4}\right)-0=\frac{2429}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { moment: } \begin{aligned}
& m=\int_{0}^{7} x\left(1+x^{3}\right) d x \\
&==\left(7+\frac{7^{4}}{4}\right)-0=\frac{2429}{4} \\
&=\left(\frac{49}{2}+\frac{7^{5}}{5}\right)-0=\frac{33859}{10} \\
& \Rightarrow \bar{x}=\frac{m}{m}=\frac{\frac{33859}{10}}{\frac{2429}{4}}=\frac{33859}{10} \cdot \frac{4}{2429} \\
&=\frac{135436}{24290} \simeq 5.576 \\
& 4 n n i t s
\end{aligned}
\end{aligned}
$$

Consider a discrete set of 2-d masses.
How do we find the center of mass (the geometric center) (\bar{x}, \bar{y}) ?

EX 3
The masses and coordinates of a system of particles are given by the following: $5,(-3,2) ; 6,(-2,-2) ; 2,(3,5) ; 7,(4,3) ; 1,(7,-1)$. Find the moments of this system with respect to the coordinate axes and find the center of mass.
(mass is written in blue)

$$
\begin{aligned}
& 5_{x} x^{2} \times 7 \\
& m_{y}=\sum_{i=1}^{\sum} x_{i} m_{i} \\
& =5(-3)+2(3)+7(4) \\
& +6(-2)+1(7) \\
& m_{x}=5(2)+2(5)+7(3) \\
& +6(-2)+1(-1) \\
& \Rightarrow m_{y}=-15+6+28-12+7 \\
& =-27+6+7+28 \\
& =14 \\
& M_{x}=10+10+21-12-1=41-13=28
\end{aligned}
$$

total mass $=m=5+2+7+6+1=21$

$$
\bar{x}=\frac{m_{y}}{m}=\frac{14}{21}=\frac{2}{3} \quad \bar{y}=\frac{m_{x}}{m}=\frac{28}{21}=\frac{4}{3}
$$

Now, consider a continuous 2-d region (a lamina) that has constant (homogeneous) density everywhere. How do we find the center of mass (\bar{x}, \bar{y}) ?
It's still true $\bar{x}=\frac{m_{y}}{m}, \bar{y}=\frac{m_{x}}{m}$

total mass
(densit y-area) $\delta=$ density (Per area unit)

$$
\Rightarrow \delta \cdot \text { area }=\text { mass }
$$

notice: $\int_{a}^{b}(f(x)-g(x)) d x$

$$
\begin{aligned}
& m_{y}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} m_{i} \\
&=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x_{i}(\delta) \\
&=\delta \int_{a}^{b} x(f(x)-g(x)) d x \\
& \Rightarrow \bar{x}=\frac{m_{y}}{m}=\frac{\delta \int_{a}^{b} x(f(x)-g(x)) d x}{\nabla \int_{a}^{b}(f(x)-g(x)) d x} \\
& \bar{x}=\frac{\int_{a}^{b} x(f(x)-g(x)) d x}{\int_{a}^{b}(f(x)-g(x)) d x}
\end{aligned}
$$

$$
=\text { total area }
$$

x-coors. of center of mass
note: not dependent on δ. for $2 d$ Lamina (geometry is the most important)

$$
\begin{aligned}
M_{x} & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} y_{i} m_{i} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\underbrace{\frac{f\left(x_{i}\right)+g\left(x_{i}\right)}{2}}_{\text {avg y value }})(\underbrace{\delta\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x_{i}}_{\text {mass }}
\end{aligned}
$$

in that little bit of area/mass.

$$
\begin{aligned}
&=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\delta}{2}\left(f^{2}\left(x_{i}\right)-g^{2}\left(x_{i}\right)\right) \Delta x_{i} \\
& m_{x}=\int_{a}^{b} \frac{\delta}{2}\left(f^{2}(x)-g^{2}(x)\right) d x \\
& \Rightarrow \bar{y}=\frac{m_{x}}{m}=\frac{\frac{1}{2} \delta \int_{a}^{b}\left(f^{2}(x)-g^{2}(x)\right) d x}{\delta \int_{a}^{b}(f(x)-g(x)) d x} \\
& \bar{y}=\frac{\int_{a}^{b}\left(f^{2}(x)-g^{2}(x)\right) d x \quad}{2 \int_{a}^{b}(f(x)-g(x)) d x} \begin{array}{l}
y \text {-cord } \\
\text { of canter mass } \\
\text { of mass } \\
\text { for ?d } \\
\text { lamina }
\end{array}
\end{aligned}
$$

EX 4
Find the centroid of the region bounded by $y=x^{2}$ and $y=x+2$.

pts of

$$
\begin{aligned}
& \bar{x}=\frac{m_{y}}{m}=\frac{\int_{a}^{b} x(f(x)-g(x)) d x}{\int_{a}^{b}(f(x)-g(x)) d x} \\
& \bar{y}=\frac{m_{x}}{m}=\frac{\frac{1}{2} \int_{a}^{b}\left(f^{2}(x)-g^{2}(x)\right) d x}{\int_{a}^{b}(f(x)-g(x)) d x}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{\text { inter section }}{x^{2}=x+2^{2}} \\
x^{2}-x-2=0 \\
(x-2)(x+1)=0
\end{array} \\
&=\int_{-1}^{2}\left(x+2-x^{2}\right) d x \\
&=\left(-\frac{x^{3}}{3}+\frac{x^{2}}{2}+2 x\right) L_{1}^{2} \\
&=\left(-\frac{8}{3}+2+4\right)-\left(\frac{1}{3}+\frac{1}{2}-2\right. \\
&=-\frac{9}{3}+8-\frac{1}{2}=4 \frac{1}{2}-\frac{9}{2}
\end{aligned}
$$

$$
M_{y}=\int_{-1}^{2} x\left(x+2-x^{2}\right) d x
$$

$$
=\int_{-1}^{-1}\left(-x^{3}+x^{2}+2 x\right) d x=\left.\left(\frac{-x^{4}}{4}+\frac{x^{3}}{3}+x^{2}\right)\right|_{1} ^{2}
$$

$$
=\left(-y+\frac{8}{3}+y\right)-\left(\frac{-1}{4}-\frac{1}{3}+1\right)
$$

$$
=-1+\frac{9}{3}+\frac{1}{4}=2 \frac{1}{4}=\frac{9}{4}
$$

$$
M_{x}=\frac{1}{2} \int_{-1}^{2}\left((x+2)^{2}-\left(x^{2}\right)^{2}\right) d x
$$

$$
=\frac{1}{2} \int_{-1}^{2}\left(-x^{4}+x^{2}+4 x+4\right) d x
$$

$$
=\left.\frac{1}{2}\left(\frac{-x^{5}}{5}+\frac{x^{3}}{3}+2 x^{2}+4 x\right)\right|_{-1} ^{2}
$$

$$
\left.=\frac{1}{2}\left(-\frac{32}{5}+\frac{8}{3}+8+8\right)-\left(\frac{1}{5}-\frac{1}{3}+2-4\right)\right)
$$

$$
=\frac{1}{2}\left[-\frac{33}{5}+\frac{9}{3}+18\right]
$$

$$
=\frac{1}{2}\left[21-\frac{33}{5}\right]=\frac{105-33}{10}=\frac{72}{10}
$$

$$
\begin{aligned}
\Rightarrow \bar{x} & =\frac{m_{y}}{m}=\frac{9 / 4}{9 / 2}=\frac{9}{4} \cdot \frac{2}{9}=\frac{1}{2} \\
\bar{y} & =\frac{m_{x}}{m}=\frac{72 / 10}{9 / 2}=\frac{72}{10} \cdot \frac{2}{9}=\frac{8}{5}
\end{aligned}
$$

One Planet and One Star

