31 Length Curve

Length of a Curve and Surface Area

Length of a Plane Curve

A plane curve is a curve that lies in a two-dimensional plane. We can define a plane curve using parametric equations. This means we define both x and y as functions of a parameter.

Parametric equations

Definition

A plane curve is smooth if it is given by a pair of parametric equations $x=f(t)$, and $y=g(t)$, tis on the interval $[a, b]$ where f^{\prime} and g^{\prime} exist and are continuous on $[a, b]$ and $f^{\prime}(t)$ and $g^{\prime}(t)$ are not simultaneously zero on (a, b).

EX 1 Sketch the graph of the curve given by these parametric equations. $x=3 t^{2}+2 \quad y=2 t^{2}-1 \quad 1 \leq t \leq 4$

Arc length
We can approximate the length of a plane curve by adding up lengths of linear segments between points on the curve.

$t \in[a, b]$
$L=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

$$
L=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

EX 2 Find the circumference of the circle $x^{2}+y^{2}=r^{2}$.

EX 3 Find the length of the line segment on $2 y-2 x+3=0$ between $y=1$ and $y=3$. Check your answer using the distance formula.

31 Length Curve

EX 4 Find the arc length of the curve $f(x)=\sqrt{x}$ from $x=0$ to $x=4$.

Surface Area

Differential of Arc Length
Let $f(x)$ be continuously differentiable on $[a, b]$. Start measuring arc length from ($a, f(a)$) up to ($x, f(x)$), where a is a real number. Then, the arc length is a function of x.

$$
\begin{aligned}
& \text { accumulate arc length } \\
& \qquad s(x)=\int_{a}^{x} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} d t
\end{aligned}
$$

31 Length Curve

Surface Area of a Surface of Revolution
Rotate a plane curve about an axis to create a hollow three-dimensional solid.
Find the surface area of the solid.

EX 4 Find the area of the surface generated by revolving $y=\sqrt{25-x^{2}}$ on the interval $[-2,3]$ about the x-axis.

EX 5 Find the area of the surface generated by revolving $x=1-t^{2}, y=2 t$, on the t-interval $[0,1]$ about the x-axis.

