

Consider this function: $\quad f(x)=\frac{x^{2}+x-12}{x-3}$

What happens at $x=3$?

What happens as we approach $x=3$?

x	$\mathrm{f}(\mathrm{x})$
3.25	7.25
3.2	7.2
3.1	7.05
3.05	7.01
3.001	7.001
3	$?$
2.00	6.99
2.95	6.95
2.9	6.9
2.8	6.8

So we say as x approaches $3, f(x)$ approaches 7 .

Graphically, it looks like this:

2 Introduction to Limits

Definition: To say $\lim _{x \rightarrow c} f(x)=L$ means that when x is near, but different from c, then $f(x)$ is near L.

Ex 1

$$
\begin{array}{ll}
\text { Ex } 1 & \lim _{x \rightarrow 2}(3 x+1)= \\
\text { Ex } 2 & \lim _{x \rightarrow 5} \frac{2 x^{2}-7 x-15}{x-5}= \\
\text { Ex } 3 & \lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}=
\end{array}
$$

$$
\text { Ex } 4 \quad \lim _{x \rightarrow 0} \frac{\sin x}{x}=
$$

Argument 1

1.0	0.84147
0.5	0.95885
0.1	0.99833
0.01	0.99998
0	$?$
-0.01	0.99998
-0.1	0.00933
-0.5	0.05885
-1.0	0.84147

Graphically:

Argument 2

2 Introduction to Limits

Ex $5 \quad \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=$

Ex $6 \quad \lim _{x \rightarrow 3} \llbracket x \rrbracket=$

Definition: Right and Left Hand Limits
$\lim _{x \rightarrow c^{+}} f(x)=L \quad$ means that when x approaches c from the right side of c, then $f(x)$ is near L.
$\lim _{x \rightarrow c^{-}} f(x)=L \quad$ means that when x approaches c from the left side of c, then $f(x)$ is near L.

Theorem A $\quad \lim _{x \rightarrow c} f(x)=L \quad$ iff $\quad \lim _{x \rightarrow c^{-}} f(x)=L=\lim _{x \rightarrow c^{+}} f(x)$

2 Introduction to Limits

Determine these limits for this function.

$\lim _{x \rightarrow-1} f(x)=$
$\lim _{x \rightarrow--^{-}} f(x)=$
$\lim _{x \rightarrow-1^{+}} f(x)=$
$\lim _{x \rightarrow 1} f(x)=$
$\lim _{x \rightarrow 0} f(x)=$

