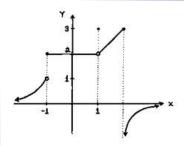


Limits: An Introduction



Consider this function:
$$f(x) = \frac{x^2 + x - 12}{x - 3}$$

What happens at x = 3?

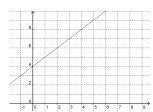
What happens as we approach x = 3?

Х	f(x)
3.25	7.25
3.2	7.2
3.1	7.05
3.05	7.01
3.001	7.001
3	?
2.00	6.99
2.95	6.95
2.9	6.9
2.8	6.8

So we say as x approaches 3, f(x) approaches 7.

Algebraically we compute it this way:

Graphically, it looks like this:



Definition: To say $\lim_{x\to c} f(x) = L$ means that when x is near, but different from c,

then f(x) is near L.

$$\lim_{x\to 2} (3x+1) =$$

Ex 2
$$\lim_{x \to 5} \frac{2x^2 - 7x - 15}{x - 5} =$$

$$\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3} =$$

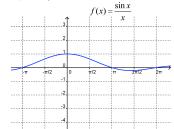
$$\operatorname{Ex} 4 \qquad \lim_{x \to 0} \frac{\sin x}{x} =$$

Argument 1

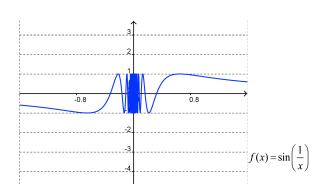
Argument 2

1.0	0.84147
0.5	0.95885
0.1	0.99833
0.01	0.99998
0	?
-0.01	0.99998
-0.1	0.00933
-0.5	0.05885
-1.0	0.84147

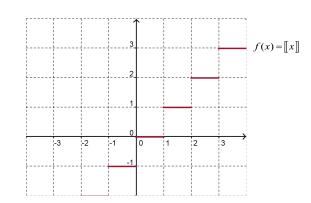
Graphically:



Ex 5
$$\lim_{x\to 0} \sin\left(\frac{1}{x}\right) =$$



 $\operatorname{Ex 6} \qquad \lim_{x \to 3} \llbracket x \rrbracket =$

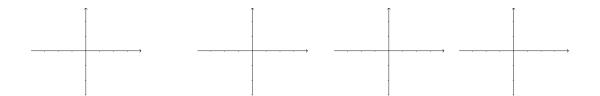


Definition: Right and Left Hand Limits

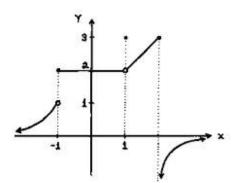
 $\lim_{x\to c^+} f(x) = L \quad \text{means that when x approaches } c \text{ from the right side of } c,$ then f(x) is near L.

 $\lim_{x\to c^-} f(x) = L \quad \text{means that when x approaches } c \text{ from the left side of } c,$ then f(x) is near L.

Theorem A $\lim_{x \to c} f(x) = L$ iff $\lim_{x \to c^{+}} f(x) = L = \lim_{x \to c^{+}} f(x)$



Determine these limits for this function.



$$\lim_{x \to -1} f(x) =$$

$$\lim_{x \to -1^{-}} f(x) =$$

$$\lim_{x \to -1^{+}} f(x) =$$

$$\lim_{x \to 1} f(x) =$$

$$\lim_{x \to 0} f(x) =$$