

Mean Value Theorem for Integrals

Definition Average Value of a Function
If f is integrable on $[a, b]$, then the average value of f on $[a, b]$ is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

EX 1 Find the average value of this function on $[0,3] \quad f(x)=\frac{x}{\sqrt{x^{2}+16}}$

Mean Value Theorem for Integrals

If f is continuous on $[a, b]$ there exists a value c on the interval (a, b) such that

$$
\int_{a}^{b} f(t) d t=f(c)(b-a)
$$

EX 2 Find the values of c that satisfy the MVT for integrals on $[0,1]$. $f(x)=x(1-x)$

EX 3 Find values of c that satisfy the MVT for integrals on $[3 \pi / 4, \pi]$.

$$
f(x)=\cos (2 x-\pi)
$$

Symmetry Theorem

If f is an even function, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
If f is an odd function, then $\int_{-a}^{a} f(x) d x=0$.

Theorem

If f is a periodic function with period p, then $\int_{a+p}^{b+p} f(x) d x=\int_{a}^{b} f(x) d x$.

EX $4 \int_{-\pi / 2}^{\pi / 2} x^{2} \sin ^{2}\left(x^{3}\right) \cos \left(x^{3}\right) d x$

EX $5 \int_{-\pi / 2}^{\pi / 2} x \sin ^{2}\left(x^{3}\right) \cos \left(x^{3}\right) d x$

