

The First Fundamental Theorem of Calculus

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

The First Fundamental Theorem of Calculus
Let f be continuous on $[a, b]$ and let x be a value in (a, b). Then

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Theorem Comparison Property
If f and g are integrable on $[\mathrm{a}, \mathrm{b}]$ and if $f(x) \leq g(x)$ for all x on $[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$

Theorem Boundless Property
If f is integrable on $[a, b]$ and $m \leq f(x) \leq M$ for all a on $[a, b]$, then $\mathrm{m}(\mathrm{b}-\mathrm{a}) \leq \int_{a}^{b} f(x) d x \leq \mathrm{M}(\mathrm{b}-\mathrm{a})$

26 First Fundamental Thm

Theorem Linearity of the Definite Integral

If f and g are integrable on $[\mathrm{a}, \mathrm{b}]$ and k is a real number, then
(i) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
and
(ii) $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$

EX 1 Suppose $\int_{0}^{1} f(x) d x=2 \quad \int_{1}^{2} f(x) d x=3$

$$
\int_{0}^{1} g(x) d x=-1 \quad \int_{0}^{2} g(x) d x=4
$$

Calculate $\int_{0}^{2}(\sqrt{3} f(t)+\sqrt{2} g(t)+\pi) d t$.

EX 2 Find $G^{\prime}(x)$ for each of these.
a) $G(x)=\int_{3}^{x} 4 t d t$
b) $G(x)=\int_{1}^{x}\left(\cos ^{3}(2 t) \tan (t)\right) d t \quad-\pi / 2<x<\pi / 2$
c) $G(x)=\int_{-2}^{x}(x t) d t$

EX 3 Find $\frac{d^{x^{2}+x}}{d x} \int_{1}^{2 w+\sin w} d w$

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

