26 First Fundamental Thm

The First Fundamental Theorem of Calculus

Let *f* be continuous on [a,b] and let *x* be a value in (a,b). Then

$$\frac{d}{dx}\int_{a}^{x}f(t)dt = f(x)$$

Theorem Comparison Property

If *f* and *g* are integrable on [a,b] and if $f(x) \le g(x)$ for all x on [a,b],

then
$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

Theorem Boundless Property

If f is integrable on [a,b] and $m \le f(x) \le M$ for all a on [a,b], then m(b-a) $\le \int_{a}^{b} f(x) dx \le M(b-a)$

Theorem Linearity of the Definite Integral

If *f* and *g* are integrable on [a,b] and *k* is a real number, then

(i)
$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$$

and
$$\int_{a}^{b} (f(x) \pm g(x))dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$

(ii)
$$\int_{a}^{b} (f(x) \pm g(x))dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$

EX 1 Suppose
$$\int_{0}^{1} f(x)dx = 2$$
 $\int_{1}^{2} f(x)dx = 3$
 $\int_{0}^{1} g(x)dx = -1$ $\int_{0}^{2} g(x)dx = 4$

Calculate $\int_{0}^{2} (\sqrt{3}f(t) + \sqrt{2}g(t) + \pi)dt$.

EX 2 Find G'(x) for each of these.

a)
$$G(x) = \int_{3}^{x} 4t dt$$

b)
$$G(x) = \int_{1}^{x} (\cos^3(2t) \tan(t)) dt - \pi/2 < x < \pi/2$$

c)
$$G(x) = \int_{-2}^{x} (xt) dt$$

EX 3 Find
$$\frac{d}{dx} \int_{1}^{x^2+x} \sqrt{2w+\sin w} \, dw$$

$$\frac{d}{dx}\int_{a}^{x}f(t)\,dt=f(x)$$