

The Definite Integral

want to calculate the area under a curve $y=f(x)$ from $x=a$ to $x=b$.

$$
A=\underbrace{f\left(x_{1}\right) \Delta x_{1}}_{\begin{array}{c}
\text { area of } \\
\text { rect 1 }
\end{array}}+\underbrace{f\left(x_{2}\right) \Delta x_{2}+\ldots+f\left(x_{n}\right) \Delta x_{n}}_{\begin{array}{c}
\text { area of } \\
\text { rect 2 }
\end{array}}
$$

$\sin \alpha$ we can choose, let's let all $\Delta x_{i}=A x$ (all rectangles have same width of $A x$)
have n rectangles: $\Delta x=\frac{b-a}{n}$

$$
x_{i}=a+i \Delta x \quad i=b, \ldots, n
$$

$$
x_{1}=a, x_{2}=a+\Delta x, x_{3}=a+2 \Delta x, \ldots
$$

$$
x_{i}=a+i\left(\frac{b-a}{n}\right)
$$

$$
\begin{aligned}
& \Rightarrow A=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x_{i}=\underbrace{\sum_{i=1}^{n} f\left(a+i\left(\frac{b-a}{n}\right)\right)\left(\frac{b-g}{n}\right)}_{\text {approximate area }} \underbrace{\begin{array}{l}
\frac{n}{i} \text { it: } \\
\text { sis } \\
\text { vanmabtion }
\end{array}}_{\text {because we can choose }}
\end{aligned}
$$

the height of each rectangle (ie. we can choose right endpt, left end pt or something $f\left(x_{3}\right)$ in between), I chose right endpt height.
exact area

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(a+i\left(\frac{b-a}{n}\right)\right)\left(\frac{b-a}{n}\right)
$$

Petite Integral

Definition of the Definite Integral
Let f be a function that is defined on [abb]. If $\quad \lim _{|P| \rightarrow 0} \sum_{i=1}^{n} f\left(\overline{x_{i}}\right) \Delta x_{i} \quad$ exists, we sp is in iegasole on (abb) and

(3) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$

Integrability Theorem
If f is bounded on $[a, b]$ and continuous there except for a finite number of discontinuities, then f is integrable on $[a, b]$. So, if f is continuous on $[a, b]$ it is integrable on $[a, b]$.

Interval Additive Property
If $f(x)$ is integrable, then $\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x$.

entire area
=area of (1) +area of (2)

EX 1 Evaluate this definite integral using the definition.

$$
b_{a=-1}=2=\int_{-1}^{2}(2 x-3) d x \quad=\lim _{n \rightarrow \infty} \sum_{i=1} f\left(a+i\left(\frac{b-a}{n}\right)\right)\left(\frac{b-a}{n}\right)
$$

$$
\begin{aligned}
& A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\underbrace{\left.\left(-1+\frac{3 i}{n}\right)-3\right)}_{f^{f}\left(x_{i}\right)} \underbrace{\left(\frac{3}{n}\right)}_{\Delta x} \\
&=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(-2+\frac{6 i}{n}-3\right) \frac{3}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(-\frac{15}{n}+\frac{18 i}{n^{2}}\right) \\
&=\lim _{n \rightarrow \infty}\left(\frac{-15}{n} \sum_{i=1}^{n} 1+\frac{18}{n^{2}} \sum_{i=1}^{n} i\right) \\
&=\lim _{n \rightarrow \infty}\left(\frac{-15}{n}(n)+\frac{18}{n^{2}}\left(\frac{\alpha(n+1)}{x}\right)\right) \\
&=\lim _{n \rightarrow \infty}\left(-15+\frac{9 /}{n}+\frac{9}{n}\right) \\
&=\lim _{n \rightarrow \infty}\left(-6+\frac{9}{2}\right)=-6 \text { units }^{2} \\
& 0
\end{aligned}
$$

EX 2 Evaluate this definite integral using the definition.

$$
A=\int_{0}^{2}\left(3 x^{2}+2\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \quad b=2
$$

$$
\Delta x=\frac{b-a}{n}=\frac{2-0}{n}=\frac{2}{n}
$$

$$
x_{i}=a+i \Delta x=0+i\left(\frac{2}{n}\right)=\frac{2 i}{n}
$$

$$
\Rightarrow f\left(x_{i}\right)=3\left(\frac{2 i}{n}\right)^{2}+2
$$

$A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{12^{2}}{n^{2}}+2\right) \frac{2}{n}$ $=\frac{12 i^{2}}{n^{2}}+2$

$$
=\lim _{n \rightarrow \infty}\left(\frac{24}{n^{3}} \sum_{i=1}^{n} i^{2}+\frac{4}{n} \sum_{i=1}^{n} 1\right)
$$

$$
=\lim _{n \rightarrow \infty}\left(\frac{2^{4}}{n^{x^{2}}}\left(\frac{k(n+1)(2 n+1)}{\not x}\right)+\frac{4}{x}(x)\right)
$$

$$
=\lim _{n \rightarrow \infty}\left(\frac{4}{n^{2}}\left(2 n^{2}+3 n+1\right)+4\right)
$$

$=\lim _{n \rightarrow \infty}\left(8+\frac{14}{2}+\frac{4}{0_{0}^{2}}+4\right)$

$$
=8+4=12 \text { units }^{2}
$$

EX 3 Find the area of the region under the curve of $f(x)=-x^{2}+1$ on the interval $[-1,1]$. (To do this, divide the interval $[-1,1]$ into n equal subintervals, calculate the area of the circumscribed or inscribed rectangles and take the limit as $n \rightarrow \infty$.)

