

Introduction to Area

Area of a Polygon:

Estimating the area of a circle:

24 Introduction to Area

Sums and Sigma Notation
$1+2+3+4+\ldots+100=$
$2+4+6+8+\ldots+1000=$
$1+4+9+16+\ldots+625=$

$$
\begin{aligned}
& \sum=\text { Sigma, the capitol Greek letter called "sigma"; } \\
& \quad \begin{array}{l}
\text { It means summation. } \quad i=\text { index }
\end{array} \\
& \sum_{j=1}^{n} \frac{1}{j}=
\end{aligned}
$$

$$
\sum_{i=1}^{n} c=
$$

Linearity of \sum
Let $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ denote two sequences and c is a real number.
(i) $\sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}$
(ii) $\sum_{i=1}^{n} a_{i} \pm b_{i}=\sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i}$

Special Sum Formulas

$$
\begin{aligned}
& \sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n(n+1)}{2} \\
& \sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& \sum_{i=1}^{n} i^{3}=1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2} \\
& \sum_{i=1}^{n} i^{4}=1^{4}+2^{4}+3^{4}+\ldots+n^{4}=\frac{n(n+1)\left(6 n^{3}+9 n^{2}+n-1\right)}{30}
\end{aligned}
$$

$$
\text { EX } 1 \quad \sum_{i=1}^{10}[(i-1)(4 i+3)]
$$

EX $2 \sum_{j=1}^{n}(2 j-3)^{2}$

EX $5 \quad$ Change the variable in the index to start at $1 . \quad \sum_{k=5}^{14} k 2^{k-4}$

Collapsing Sum $\quad \sum_{i=1}^{n}\left(a_{i+1}-a_{i}\right)=a_{n+1}-a_{1}$

EX $3 \sum_{k=1}^{10}\left(2^{k}-2^{k-1}\right)$

EX $4 \sum_{k=3}^{m+1}\left(a_{k}-a_{k-1}\right)$

We will estimate the area under a curve using inscribed or circumscribed rectangles.

EX 6 For $f(x)=3 x-1$, divide the interval $[1,3]$ into 4 equal subintervals.
Calculate the area of the circumscribed rectangles.

