

Differential Equations

A differential equation is an equation that contains a derivative. We will need to integrate both sides, at some point, to 'undo' the derivative.

EX 1 Find the equation of the curve that goes through the point (2,-4) and whose slope at any point on the curve is $3 x$.

$$
\frac{d y}{d x}=3 x
$$

$$
d y=3 x d x
$$

$$
\int d y=\int 3 x d x
$$

$$
y=3\left(\frac{x^{2}}{2}\right)+c
$$

$$
\begin{aligned}
& y=\frac{3}{2} x^{2}+c \quad \quad \quad \text { general son) } \\
& -4=\frac{3}{2}\left(2^{2}\right)+c \\
& -4=6+c \rightarrow c=-10 \\
& y=\frac{3}{2} x^{2}-10 \quad \text { (particular soln) }
\end{aligned}
$$

$$
\begin{gathered}
\text { EX } \frac{d y}{d x}=\sqrt{\frac{x}{y}} \quad y=4 \text { when } x=1 \quad(1,4) \\
\frac{d y}{d x}=\frac{\sqrt{x}}{\sqrt{y}} \\
\sqrt{y} d y=\sqrt{x} d x \\
\int y^{1 / 2} d y=\int x^{1 / 2} d x \\
\frac{2}{3} y^{3 / 2}=\frac{2}{3} x^{3 / 2}+c
\end{gathered}
$$

ping in $(1,4)$ to solve for C :
note:

$$
\frac{2}{3} y^{3 / 2}+c_{1}=\frac{2}{3} x^{3 / 2}+c_{2}
$$

$$
\frac{2}{3} y^{3 / 2}=\frac{2}{3} x^{3 / 2}+(\underbrace{c_{2}-c_{1}}_{c})
$$

EX $3 \quad \frac{d y}{d x}=-y^{2}\left(x^{2}+2\right)^{4} x \quad$ through $(0,1)$

$$
\begin{aligned}
& \frac{-1}{y^{2}} d y=\left(x^{2}+2\right)^{4} x d x \\
& \int-y^{-2} d y=\int\left(x^{2}+2\right)^{4} x d x \\
&\left.\frac{-\left(y^{-1}\right.}{-1}\right)=\frac{1}{10}\left(x^{2}+2\right)^{5}+c \\
& \frac{1}{y}=\frac{1}{10}\left(x^{2}+2\right)^{5}+c
\end{aligned}
$$

(general soln)
the $(0,1)$:

$$
\begin{aligned}
& \frac{1}{1}=\frac{1}{10}(0+2)^{5}+c \\
& 1=\frac{16}{5}+c \\
& \frac{-11}{5}=c \Rightarrow \frac{1}{y}=\frac{1}{10}\left(x^{2}+2\right)^{5}-\frac{11}{5} \\
& \frac{1}{y}=\frac{\left(x^{2}+2\right)^{5}-22}{10} \\
& y=\frac{10}{\left(x^{2}+2\right)^{5}-22}
\end{aligned}
$$

EX 4 The acceleration of an object moving along a coordinate line is $a(t)=18(t-3)^{-3}$ in meters per second per second.
a) If the velocity at $t=0$ is 4 meters per second, find the velocity 2 seconds later.
b) If the initial position is -3 m , find an equation for the position of the object at time, t .

$$
a(t)=v^{\prime}(t) \quad \xi v(t)=s^{\prime}(t)
$$

(a)

$$
\begin{aligned}
& \text { (a) } \begin{array}{l}
a(t)=18(t-3)^{-3}=\frac{d v}{d t} \\
18(t-3)^{-3} d t=d v \\
\int 18(t-3)^{-3} d t=\int d v \\
-9(t-3)^{-2}+c=v
\end{array} \\
& \text { heed to solve for } c: v=4 \text {, when } \\
& 4=-9(-3)^{-2}+c \\
& 4=\frac{-9}{(-3)^{2}}+c \\
& y=-1+c \Rightarrow c=5
\end{aligned}
$$

$$
v=\frac{-9}{(t-3)^{2}}+5
$$

want to know $v(2)$

$$
\begin{array}{r}
v(2)=\frac{-9}{(z-3)^{2}}+5=-9+5= \\
-4 \mathrm{~m} / \mathrm{s}
\end{array}
$$

(b)

$$
\begin{gathered}
t=0, s=-3_{m} \\
s_{\text {sk }}^{\prime}(t)=v(t) \Leftrightarrow \frac{-9}{(t-3)^{2}}+s=\frac{d s}{d t} \\
\int\left(-9(t-3)^{2}+5\right) d t=\int d s \\
-9(t-3)^{-1} \\
-1
\end{gathered}+s t+c=s, \begin{gathered}
9(0-3)^{-1}+5(0)+c=-3 \\
9\left(\frac{-1}{3}\right)+c=-3 \\
-3+c=-3 \Rightarrow c=0 \\
\Rightarrow s(t)=9(t-3)^{-1}+5 t \quad m
\end{gathered}
$$

23B Differential Equations

