

Definition: Antiderivative

We call F an antiderivative of f on the interval, I, if

 $D_xF(x)=f(x)$ on I.

ie. If F'(x)=f(x) for all x on the interval.

Power Rule Theorem

For every real value of r except r = -1, then

$$\int x^r dx = \frac{x^{r+1}}{r+1} + C$$

Indefinite Integral is a linear operator.

EX 1 Evaluate the following integrals.

a)
$$\int \left(2x^4 + 3x^2 - 7\right) dx$$

b)
$$\int (u^3 - u^9) du$$

EX 2 Evaluate the following integrals.

a)
$$\int \left(\frac{1}{y^2} + y^{\frac{1}{3}}\right) dy$$

b)
$$\int \left(x^{-4} + \sqrt[3]{x^2} - \frac{3}{x^5}\right) dx$$

Theorem

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

EX 3
$$\int (t^2 - 2cost)dt$$

Generalized Theorem

Let g be differentiable and r a rational number, $r \neq -1$, then

$$\int [g(x)]^{r} g'(x) dx = \frac{[g(x)]^{r+1}}{r+1} + C$$

$$= \times 4 \qquad \int (4x^3 + 1)^4 12x^2 dx$$

EX 5
$$\int (5x^2+1)\sqrt{5x^3+3x-2}dx$$

$$\mathsf{EX}\,\mathsf{6} \qquad \int \frac{3y}{\sqrt{2y^2 + 5}} \, dy$$

Function $f(x)$	Antiderivative $F(x)$
1	x
2x	x^2
x^3	$\frac{1}{4}x^4$
$\cos x$ $\sin 2x$	$\sin x$ $-\frac{1}{2}\cos 2x$