

Three numeric methods for solving an equation numerically:

- ① Bisection Method
- ② Newton's Method
- ③ Fixed-point Method

(1) Bisection Method Algorithm Let f(x) be a continuous function and let a_1 and b_1 be numbers satisfying $a_1 < b_1$ and $f(a_1) \cdot f(b_1) < 0$. Let E denote the desired bound for the error $|r-m_n|$. Repeat steps 1 to 5 for n=1,2,... until $h_n < E$ 1. Calculate $m_n = \frac{a_m + b_m}{2}$

2. Calculate
$$f(m_n)$$
 and if $f(m_n) = 0$ then STOP.

3. Calculate $h_n = \left| \frac{b_n - a_n}{2} \right|$ (for error testing).

4. If
$$f(a_n) \cdot f(m_n) < 0$$
, then set $a_{n+1} = a_n$ and $b_{n+1} = m_n$

5. If $f(a_n) \cdot f(m_n) > 0$, then set $a_{n+1} = m_n$ and $b_{n+1} = b_n$.

EX 1: Approximate the real root to 2 decimal places. $f(x) = x^4 + 5x^3 + 1$ on [-1,0]

② Newton's Method Algorithm

Let f(x) be a differentiable function and let x_1 be an initial approximation to the root, r of f(x) = 0. Let E denote a bound for the error $|r-x_n|$. Repeat the following step for n = 1, 2, ... until $|x_{n+1}-x_n| < E$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
Pros:
Cons:

EX 2 Use Newton's method to approximate a root of $7x^3+2x-5=0$ to 5 decimal places.



