

Solving Equations Numerically

Three numeric methods for solving an equation numerically:
(1) Bisection Method
(2) Newton's Method
(3) Fixed-point Method

21 Numerical Solutions

(1) Bisection Method Algorithm

Let $f(x)$ be a continuous function and let a_{1} and b_{1} be numbers
satisfying $a_{1}<b_{1}$ and $f\left(a_{1}\right) \cdot f\left(b_{1}\right)<0$.
Let E denote the desired bound for the error $\left|r-m_{n}\right|$.
Cons:
Repeat steps 1 to 5 for $n=1,2, \ldots$ until $h_{n}<E$

1. Calculate $m_{n}=\frac{a_{m}+b_{m}}{2}$
2. Calculate $f\left(m_{n}\right) \quad$ and if $f\left(m_{n}\right)=0 \quad$ then STOP.
3. Calculate $h_{n}=\left|\frac{b_{n}-a_{n}}{2}\right|$ (for error testing).
4. If $f\left(a_{n}\right) \cdot f\left(m_{n}\right)<0$, then set $a_{n+1}=a_{n} \quad$ and $\quad b_{n+1}=m_{n}$.
5. If $f\left(a_{n}\right) \cdot f\left(m_{n}\right)>0$, then set $a_{n+1}=m_{n} \quad$ and $b_{n+1}=b_{n}$.

EX 1: Approximate the real root to 2 decimal places. $f(x)=x^{4}+5 x^{3}+1 \quad$ on $\quad[-1,0]$

21 Numerical Solutions

(2) Newton's Method Algorithm

Let $f(x)$ be a differentiable function and let x_{1} be an initial approximation to the root, r of $f(x)=0$. Let E denote a bound for the error $\left|r-x_{n}\right|$.
Repeat the following step for $n=1,2, .$. until $\left|x_{n+1}-x_{n}\right|<E$
$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$

EX 2 Use Newton's method to approximate a root of $7 x^{3}+2 x-5=0$
to 5 decimal places.

Warning on Newton's Method:

