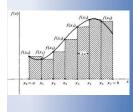


$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

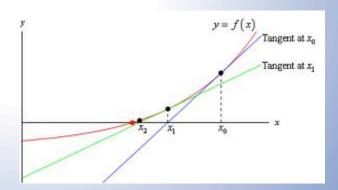
$$\frac{d}{dx} \int_{a}^{x} f(t) \ dt = f(x)$$



$$\lim_{\max \Delta x_i \to 0} \sum_{1}^{n} f(x_i) \Delta x_i = \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Solving Equations Numerically



Three numeric methods for solving an equation numerically:

- ① Bisection Method
- ② Newton's Method
- ③ Fixed-point Method

① Bisection Method Algorithm

Let f(x) be a continuous function and let a_1 and b_2 be numbers satisfying $a_1 < b_2$ and $f(a_1) \cdot f(b_2) < 0$.

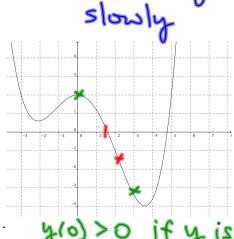
Let *E* denote the desired bound for the error $|r-m_n|$.

Repeat steps 1 to 5 for n=1,2,... until $h_n < E$

- 2. Calculate $f(m_n)$ and if $f(m_n) = 0$ then STOP.
- 3. Calculate $h_n = \left| \frac{b_n a_n}{2} \right|$ (for error testing).
- 4. If $f(a_n) \cdot f(m_n) < 0$, then set $a_{n+1} = a_n$ and $b_{n+1} = m_n$.
- 5. If $f(a_n) \cdot f(m_n) > 0$, then set $a_{n+1} = m_n$ and $b_{n+1} = b_n$.

Pros: aways

Cons: converges



y(0)>0 if y i

an Xvalue where the cure cosses

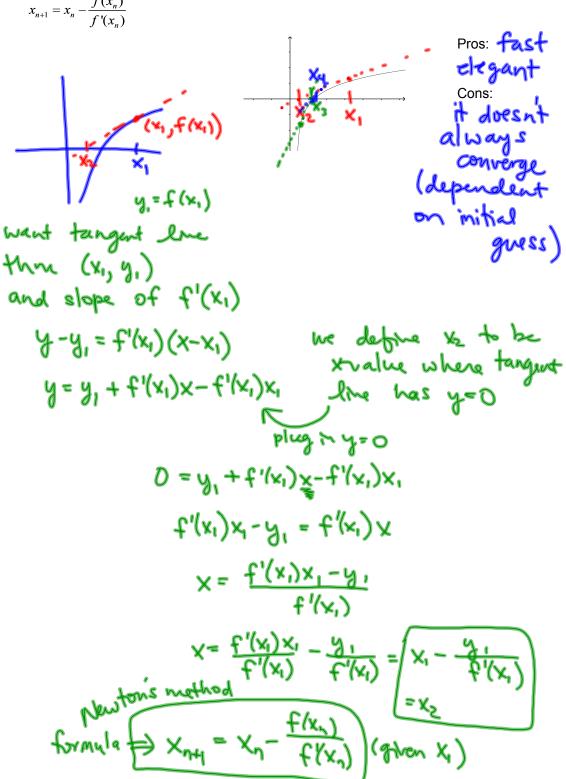
(1.5) >0 y=0.

=) there's a zero in X ∈ (1.5, 3)

EX 1: Approximate the real root to 2 decimal places. $f(x) = x^4 + 5x^3 + 1$ on $[-1,0]$						
(use Bisection			vote: f(-1)=1-5+1<0			
Method)			f(0)=1>0			
=) there is an xvalue in						
country extractive right of midnet (-1,0) such that f(x)						
7	an	bn	W	f(a,)	f (bn)	f (mn)
_	-(Ð	-0,5	-3	l	0.4375 replace In
2	-1	-D.S	-0.75	-3	D.4375	-D.7929688
3	-0.75	-0.5	-0.625	-0.79296	2584.0	-D. 5681152
4	-0'652	-0.5	-0.5675	-0.068115	2554,0	0.21022a2u
5	-9.625	-0.5652	7 F E P 2.0-		0.5/05/03	10.07768345
6	-0.625	-0.59395	-0.409375	-0.068112	<u>2</u> 0.0776814	PING B
						9.00597169
			•		1	~O (up to 2 decimal)
						Plags)

② Newton's Method Algorithm Let f(x) be a differentiable function and let x_1 be an initial approximation to the root, r of f(x) = 0. Let E denote a bound for the error $|r-x_n|$. Repeat the following step for n=1,2,... until $|x_{n+1}-x_n| < E$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$



EX 2

to 5 decimal places. $f(x) = 7x^{3} + 2x - 5$ $f'(x) = 2|x^{3} + 2$ $\times_{n} = \frac{1}{2} |x_{n}|^{3} + 2 + 2$ $= \frac{2|x_{n}|^{3} + 2x - 7x_{n}|^{3} - 2x + 5}{2|x_{n}|^{3} + 2}$ $= \frac{1}{2} |x_{n}|^{3} + 5$ $= \frac{1}{2} |x_{n}|^{3} + 5$

Use Newton's method to approximate a root of 7x3+2x-5=0

 \Rightarrow answer is ≈ 0.78792

