

Mean Value Theorem for Derivatives

Mean Value Theorem for Derivatives
If f is continuous on $[a, b]$ and differentiable on (a, b),
then there exists at least one c on (a, b) such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

EX 1 Find the number c guaranteed by the MVT for derivatives for $g(x)=(x+1)^{3}$ on $[-1,1]$

EX 2 For $g(x)=\frac{x-4}{x-3}$, decide if we can use the MVT for derivatives on $[0,5]$ or $[4,6]$. If so, find c. If not, explain why.

EX 3 For $f(x)=\csc x$ on $[-\pi / 2, \pi / 2]$, use the MVT for derivatives to find c.

Theorem B
If $f^{\prime}(x)=g^{\prime}(x)$ for all x on the interval (a, b),
then there exists a real number, c, such that $f(x)=g(x)+c$ for all x in the interval (a, b).

