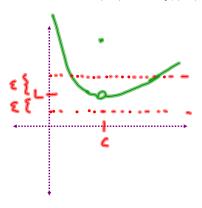
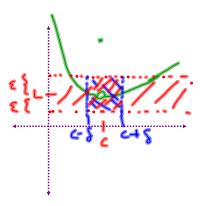

2.1 Rigorous Study of Limits

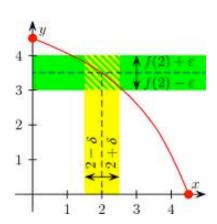



Definition

To say that $\lim_{x\to c} f(x) = L$ means that for every $\mathcal{E} > 0$ (no matter how small),

there exists a corresponding δ >0 such that $|f(x)-L|<\mathcal{E}$ provided that $0<|x-c|<\delta$;

that is, $0 < |x-c| < \delta \implies |f(x)-L| < \mathcal{E}$


2.1 Rigorous Study of Limits

EX 1 Prove that $\lim_{x\to 3} (2x-5)=1$.

EX 2 Prove that $\lim_{x\to 1} \frac{2(x-1)(x+3)}{x-1} = 8$

2.1 Rigorous Study of Limits

EX 3 Prove that
$$\lim_{x\to c} \frac{1}{x-5} = \frac{1}{c-5}$$
 for all $c \neq 5$

