2.1B Riorous Study of Limits

2.1B Riorous Study of Limits

Definition

To say that $\lim _{x \rightarrow c} f(x)=L$ means that for every $\varepsilon>0$ (no matter how small),
there exists a corresponding $\delta>0$ such that $|f(x)-L|<\varepsilon$ provided that $0<|x-c|<\delta$;
that is, $0<|x-c|<\delta \quad \Rightarrow|f(x)-L|<\varepsilon$

(2):
such that when

$$
\begin{gathered}
0<|x-c|<\delta, \text { then } \\
|f(x)-L|<\varepsilon
\end{gathered}
$$

2.1B Riorous Study of Limits

EX 1 Prove that $\lim _{x \rightarrow 3}(2 x-5)=1 . \quad(c=3, \quad L=1)$
scratch work
let $\varepsilon>0$. we have to find a $\delta>0$ s.t.
$0<|x-3|<\delta$

$$
\Rightarrow|(2 x-5)-1|<\varepsilon
$$

to make this true
need

$$
\begin{aligned}
& |2 x-6|<\varepsilon \\
& 2|x-3|<\varepsilon \\
& |x-3|<\varepsilon / 2
\end{aligned}
$$

\Rightarrow choose $\delta=\varepsilon / 2$.
pf let $\varepsilon>0$ be given. Then choose $\delta=\varepsilon / 2$.

$$
\Rightarrow \text { if } 0<|x-3|<\delta=\varepsilon / 2
$$

then $2|x-3|<\varepsilon$

$$
|2 x-6|<\varepsilon
$$

$$
|(2 x-5)-1|<\varepsilon
$$

\Rightarrow by defy

$$
\lim _{x \rightarrow 3}(2 x-5)=1
$$

(done with proof)
2.1B Riorous Study of Limits

EX 2 Prove that $\lim _{x \rightarrow 1} \frac{2(x-1)(x+3)}{x-1}=8$
scratch work

$$
\begin{gathered}
\left|\frac{2(x-1)(x+3)}{(x-1)}-8\right|<\varepsilon \\
|2(x+3)-8|<\varepsilon \\
|2 x+6-8|<\varepsilon \\
|2 x-2|<\varepsilon \\
2|x-1|<\varepsilon \\
|x=1|<\varepsilon / 2
\end{gathered}
$$

\Rightarrow this tells me to Pf $F i x=0$. Let $\delta=\varepsilon / 2$. Whenever $\left(x-1 \left\lvert\,<\delta=\frac{\varepsilon}{2}\right.\right.$

$$
\begin{gathered}
\Leftrightarrow 2|x-1|<\varepsilon \\
|2(x-1)|<\varepsilon \\
|2(x+3)-8|<\varepsilon \\
\left|\frac{2(x-1)(x+3)}{(x-1)}-8\right|<\varepsilon
\end{gathered}
$$

\Rightarrow by defy choose $\delta=\varepsilon / 2$.

EX 3 Prove that $\lim _{x \rightarrow c} \frac{1}{x-5}=\frac{1}{c-5}$ for all $c \neq 5$
scratch work
need to choose $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $|x-c|<\delta$.
i.e. want $\left|\frac{1}{x-5}-\frac{1}{c-5}\right|<\varepsilon$ whenever $|x-c|<\delta$.

$$
\begin{align*}
& \left|\frac{1}{x-5}-\frac{1}{c-5}\right|=\left|\frac{c-8-(x-8)}{(x-5)(c-5)}\right|=\left|\frac{c-x}{(x-5)(c-5)}\right|=\left|\frac{x-c}{(x-5)(c-5)}\right| \\
& \Leftrightarrow|x-c|\left|\frac{1}{x-5}\right|\left|\frac{1}{c-5}\right|<\varepsilon \tag{t}
\end{align*}
$$

Natant.
hole: $|c-5|=|\cos +x-x|=|(c-x)+(x-5)|$
(triangle inequality)

$$
\begin{aligned}
& \leq|c-x|+|x-5| \\
\Leftrightarrow & |c-5|-|x-c| \leq|x-5| \\
|x-5| & \geq|c-5|-|x c| \quad|x-c|<\delta \\
|x-5| & >|c-5|-\delta \quad \Leftrightarrow-|x c|>-\delta
\end{aligned}
$$

choose $\delta \leq \frac{|c-5|}{2} \Rightarrow-\delta \geq \frac{-|c-5|}{2}$

$$
\rightarrow|x-5|>|-5|-\frac{|-5|}{2}=\frac{1}{2}|-5|
$$

$$
\text { (D) } \Rightarrow \frac{1}{|x-5|}<\frac{2}{|-5|}
$$

$\Rightarrow(A)$ becomes

$$
\begin{aligned}
|x-c|\left|\frac{1}{x-5}\right|\left|\frac{1}{c-5}\right| & \leq \underbrace{|x-c| \frac{2}{|c-5|}\left|\frac{1}{c-5}\right|} \\
\text { choose } \delta & \leq \frac{\varepsilon|c-5|^{2}}{2} \quad \quad|x c|<\delta \\
\Rightarrow|x-c|\left|\frac{1}{x-5}\right|\left|\frac{1}{c-5}\right| & \leq \frac{\varepsilon|c-5|^{2}}{2}\left(\frac{2}{|c-5|^{2}}\right) \\
& =\varepsilon
\end{aligned}
$$

Pf let $\varepsilon>0$ be given.
choose $\delta=\min \left(\frac{|c-s|}{2}, \frac{\varepsilon \mid\left(-\left.5\right|^{2}\right.}{2}\right)$
Thun $0<|x-c|<\delta$,

$$
\begin{array}{rlr}
\Rightarrow\left|\frac{1}{x-5}-\frac{1}{c-5}\right|=\left|\frac{c-x}{(x-5)(c-5)}\right| \\
& =|x-c|\left|\frac{1}{x-5}\right|\left|\frac{1}{c-5}\right| \\
& <\frac{\varepsilon|c-5|^{x}}{2}\left(\frac{1}{|x-5|}\right) \frac{1}{|c-5|} & \begin{array}{l}
\text { need } \\
(\square)
\end{array} \\
& <\frac{\varepsilon|c-5|}{2}\left(\frac{2}{|c-5|}\right) & \text { from } \\
& =\varepsilon & \text { last } \\
& & \text { page })
\end{array}
$$

2.1B Riorous Study of Limits

