

Local Extrema

Definition
Let S be the domain of f such that c is an element of S.
Then,

1) $f(c)$ is a local maximum value of f if there exists an interval (a, b) containing c such that $f(c)$ is the maximum value of f on $(a, b) \cap S$.
2) $f(c)$ is a local minimum value of f if there exists an interval (a, b) containing c such that $f(c)$ is the minimum value of f on $(a, b) \cap S$.
3) $f(c)$ is a local extreme value of f if it is either a local maximum or local minimum

global max/ min pts a.k.a. absolute max /min pts.
global max pt: pt on graph w/ highest

How do we find the local extrema?

First Derivative Test
Let f be continuous on an open interval (a, b) that contains a critical x-value.

1) If $f^{\prime}(x)>0$ for all x on (a, c) and $f^{\prime}(x)<0$ for all x on ($\left.c, b\right)$, then $f(c)$ is a local maximum value.
2) If $f^{\prime}(x)<0$ for all x on (a, c) and $f^{\prime}(x)>0$ for all x on (c,b), then $f(c)$ is a local maximum value.
3) If $f^{\prime}(x)$ has the same sign on both sides of c, then $f(c)$ not a maximum nor a minimum value.
basically:

to find all $\mathrm{mm} /$ max pts (local and global),
take first denvatire,
(1) look for x-values and that make it under find (2) look for x viralues that make $y^{\prime}=0$

EX 1 Determine local maximum and minimum points for $y=2 x^{2}-5 x+3$.

$$
\begin{aligned}
y^{\prime} & =\underset{\substack{4 x-5 \\
\frac{5}{\mathrm{~mm}}}}{\frac{5 / 4}{4}}+y^{\prime} \\
& +
\end{aligned}
$$

(no singular pts)
no max pts.
min pt $(5 / 4,-1 / 8)$ global

$$
\begin{aligned}
y(5 / 4) & =2\left(\frac{5}{4}\right)^{2}-5\left(\frac{5}{4}\right)+3 \\
& =\frac{25}{8}-\frac{25}{4}+3 \\
& =\frac{-25}{8}+3=-1 / 8
\end{aligned}
$$

EX 2 Find all local maximum and minimum points for $f(x)=\frac{1}{2} x+\operatorname{sinx}$ on $[0,2 \pi]$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2}+\cos x=0 \quad \text { (no singular pts) } \\
& \cos x=-1 / 2 \quad \max \left(\frac{2 \pi}{3}, \frac{\pi}{3}+\frac{\sqrt{3}}{2}\right) \\
& x=2 \pi / 3,4 \pi / 3 \quad \min \left(\frac{4 \pi}{3}, \frac{2 \pi}{3},-\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

test:

$$
\begin{array}{ll}
x=\pi / 6, & (+)+(t) \\
x=\pi, & \frac{1}{2}+-1 \\
x=3 \pi / 2, & \frac{1}{2}+0
\end{array}
$$

$$
\begin{aligned}
& f(x)=\frac{1}{2} x+\sin x \\
& f\left(\frac{2 \pi}{3}\right)=\frac{1}{2}\left(\frac{2 \pi}{3}\right)+\sin (2 \pi / 3)=\frac{\pi}{3}+\frac{\sqrt{3}}{2} \\
& f\left(\frac{4 \pi}{3}\right)=\frac{1}{2}\left(\frac{4 \pi}{3}\right)+\sin (4 \pi / 3)=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}
\end{aligned}
$$

Theorem: Second Derivative Test (this gives another way to Let f^{\prime} and $f^{\prime \prime}$ exist at every point on the interval (a, b) containing c and $f^{\prime}(c)=0$.

1) If $f^{\prime \prime}(c)<0$, then $f(c)$ is a local maximum.
$\eta^{m a x}$
Comic
confirm min max pts.)

EX 3 Find all critical points for $f(x)=x^{3}-3 x^{2}+1$.
(min/max pts)

$$
\begin{array}{r}
f^{\prime}(x)=3 x^{2}-6 x=0 \\
\frac{3 x(x-2)=0}{x=0,2}
\end{array}
$$

test:
(no singular pts)

$$
\begin{aligned}
& x=1,+(-) \\
& f^{\prime \prime}(x)=6 x-6 \\
& f^{\prime \prime}(0)=-6<0 \Rightarrow \text { concave down at } x-0 \Rightarrow \max \\
& f^{\prime \prime}(2)=12-6=6>0 \Rightarrow \text { concave up at } x=2 \Rightarrow \min
\end{aligned}
$$

$\frac{\text { critical pts local }}{(0,1) \text { max }}$

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}+1 \\
& f(0)=1
\end{aligned}
$$

$(2,-3)$ min

$$
f(2)=8-4(3)+1=-3
$$

EX 4 Find local and global extrema for $y=x^{2}+\frac{1}{x^{2}}$ on $[-2,2]$.
note. there's a VA at $x=0$ (we expect all clenvatives to also be undefined at $x=0$)
$y^{\prime}=2 x+\frac{-2}{x^{3}}=0$

$x=-2, \pm \quad x=1 / 2, \frac{-}{+}$ $x=-1 / 2, \equiv x=1000, \frac{t}{7}$

$$
\begin{aligned}
y^{\prime \prime} & =2+\frac{-2(-3)}{x^{4}} \quad \text { (problem } \\
& =\frac{2 x^{4}+6}{x^{4}}>0 \text { always }
\end{aligned}
$$

on $[-2,2] \quad y=x^{2}+\frac{1}{x^{2}}$
$\min (-1,2) \quad y(\pm 1)=1+1=2$
$\min (1,2) \quad y(\pm 2)=4+\frac{1}{4}=\frac{17}{4}$
endpts ($-2,4 \frac{4}{4}$)

\Rightarrow no global max (because graph goes up to ∞) global min pts $(\$ 1,2)$

EX 5 Let f be continuous such that f ' has the following graph.
Try to sketch a graph of $f(x)$ and answer these questions.

a) Where is f increasing?
b) Where is f decreasing?
c) Where is f concave up?
d) Where is f concave down?
e) Where are inflections points?
f) Where are local max/min values?
 $\frac{\min / \text { max } p t \text {. }}{\text { at } x=-3(\text { max })}$ (singular) $\begin{array}{ll}x=-1 \quad(\text { min }) \\ x=0 \quad(\text { mar } x)\end{array}$ inflection pts: at $x=-2$ and $x=2$

18B Local Extrema

