17 Monotonicity Concavity

Monotonicity and Concavity

Definition
Let f be defined on an interval I, (open, closed or neither), we say that:

1) f is increasing on I if for every x_{1}, x_{2} in I $x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$.
2) f is decreasing on I if for every x_{1}, x_{2} in I $x_{1}<x_{2}$ implies $f\left(x_{1}\right)>f\left(x_{2}\right)$.
3) f is strictly monotonic on I if it is either increasing or decreasing on I.

Monotonicity Theorem

Let f be continuous on the interval, I and differentiable everywhere inside I.

1) if $f^{\prime}(x)>0$ for all x on the interval, then f is increasing on that interval.
2) if $f^{\prime}(x)<0$ for all x on the interval, then f is decreasing on that interval.

17 Monotonicity Concavity

EX 1 For each function, determine where f is increasing and decreasing.
a) $f(x)=x^{3}+3 x^{2}-12$
b) $f(x)=\frac{x-1}{x^{2}}$

EX 2 Where is $f(x)=\cos ^{2} x$ increasing and decreasing on the interval $[0,2 \pi]$?

17 Monotonicity Concavity

Definition

Let f be differentiable on an open interval, I .
f is concave up on I if $f^{\prime}(x)$ is increasing on I, and
f is concave down on I if $f^{\prime}(x)$ is decreasing on I .

Concavity Theorem

Let f be twice differentiable on an open interval, I.
If $f^{\prime \prime}(x)>0$ for all x on the interval, then f is concave up on the interval.
If $f^{\prime \prime}(x)<0$ for all x on the interval, then f is concave down on the interval.

EX 3 Determine where this function is increasing, decreasing, concave up and concave down.

$$
f(x)=4 x^{3}-3 x^{2}-6 x+12
$$

Inflection Point
Let f be continuous at c. We call (c, $f(c)$) an inflection point of f if f is concave up on one side of c and concave down on the other side of c.

Inflection points will occur at x-values for which $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ is undefined.

EX 4 For this function, determine where it is increasing and decreasing, where it is concave up and down, find all max/min and inflection points. Use this information to sketch the graph.

$$
f(x)=8 x^{1 / 3}-x^{4 / 3}
$$

