

Maxima and Minima

Maxima and Minima

Definition: Let S, the domain of f, contain the point c.
Then
i) $f(c)$ is a maximum value of f on S if $f(c) \geq f(x)$ for all x in S.
ii) $f(c)$ is a minimum value of f on S if $f(c) \leq f(x)$ for all x in S.
iii) $f(c)$ is an extreme value of f on S if it is the maximum or a minimum value.
iv) the function we want to maximize or minimize is called the objective function.

Maximum - Minimum Existence Theorem

If f is continuous on a closed interval $[a, b]$, then f attains both a maximum and minimum value on that interval.

These can occur in one of three ways:

1) endpoints of the closed interval.
2) stationary points where $f^{\prime}(x)=0$.
3) singular points where $f^{\prime}(x)$ does not exist.

Critical Point Theorem

Let f be defined on a closed interval, I containing the point c. If $f(c)$ is an extreme value, then c is called a critical value.
(c, $f(c)$) is either

1) an endpoint of I or
2) a stationary point of f, i.e., $f^{\prime}(c)=0$ or
3) a singular point of f, i.e., $f^{\prime}(c) D N E$.

Ex 1 Find the minimum and maximum values of $f(x)=-2 x^{3}+3 x^{2}$ on $[-1,3]$.

EX 2 Find the minimum and maximum points for $f(x)=x^{2 / 5}$ on $[-1,32]$

EX 3 Show that for a rectangle with perimeter of 30 inches, it has maximum area when it is a square.

EX 4 Identify critical points and specify the maximum and minimum values. $f(x)=x-2 \sin x \quad$ on $[-2 \pi, 2 \pi]$.

EX 5 Sketch the graph of a function with all of these characteristics:

1) continuous, but not necessarily differentiable.
2) has domain $[0,6]$
3) reaches a maximum value of 4 (at $x=4$)

EX 6 Find all inflection points for $f(x)=2 x^{\frac{1}{3}}-1$

16 Maxima Minima

