15.5 Differentials

Differentials and Approximations

Differentials and Approximations

We have seen the notation dy/dx and we've never separated the symbols.
Now, we'll give meaning to dy and dx as separate entities.

We know $\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=f^{\prime}\left(x_{0}\right)$ gives the derivative (slope) of the function $f(x)$ at $x=x_{0}$. ΔX

If Δx is really small, then $\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} \approx f^{\prime}\left(x_{0}\right)$
Δx
and $f\left(x_{0}+\Delta x\right)-f(x) \approx f^{\prime}\left(x_{0}\right) \Delta x$

Differentials
Let $y=f(x)$ be a differentiable function of $x . \Delta x$ is an arbitrary increment of x.
$d x=\Delta x \quad(d x$ is called a differential of x.)
Δy is actual change in y as x goes from x to $x+\Delta x$.
i.e. $\Delta y=f(x+\Delta x)-f(x)$
$d y=f^{\prime}(x) d x \quad(d y$ is called the differential of y.

15.5 Differentials

EX 1 Find dy.
a) $y=4 x^{3}-2 x+5$
b) $y=2 \sqrt{x^{4}+6 x}$
c) $y=\cos \left(x^{3}-5 x+11\right)$
d) $y=\left(x^{10}+\sqrt{\sin (2 x)}\right)^{2}$

Differentials can be used for approximations.
If $\quad f(x+\Delta x)-f(x) \approx f^{\prime}(x) \Delta x$, then $\quad f(x+\Delta x) \approx f(x)+f^{\prime}(x) \Delta x$.

EX 2 Find a good approximation for $\sqrt{9.2}$ without using a calculator.

15.5 Differentials

EX 3 Use differentials to approximate the increase in the surface area of a soap bubble when its radius increases from 4 inches to 4.1 inches.

EX 4 The height of a cylinder is measured as 12 cm with a possible error of $\pm 0.1 \mathrm{~cm}$. Evaluate the volume of the cylinder with radius 4 cm and give an estimate for the possible error in this value.

