
13 Higher Order Derivatives

Higher Order Derivatives

$$f'(x), f''(x), f'''(x), f^{iv}(x)$$

$$\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \frac{d^4y}{dx^4}$$

$$y', y'', y''', y'''', y^{(4)}$$

$$D_x(y), D_x^2(y), D_x^3(y) D_x^4(y)$$

Note that
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$
 or $\frac{dy'}{dx}$

Higher Order Derivatives

Derivative	f' notation	y' notation	D _x notation	Leibniz notation
First				
Second				
Third				
Fourth				
Fifth				
n th				

EX 1 Find f'''(x) for $f(x) = (3-5x)^5$

13 Higher Order Derivatives

Ex 2 Find
$$\frac{dy}{dx}$$
 for $y = sin\left(\frac{\pi}{x}\right)$.

Ex 3 What is
$$D_x^5(3x^4-2x^3+x^2-4)$$
 ?

Ex 4 Find a formula for
$$D_x^n \left(\frac{1}{x}\right)$$
.

We know
$$v(t) = s'(t)$$

 $a(t) = v'(t) = s''(t)$

- EX 5 An object moves along a horizontal coordinate line according to $s(t)=t^3-6t^2$. s is the directed distance from the origin (in ft.) t is the time (in seconds.)
 - a) What are v(t) and a(t)?
 - b) When is the object moving to the right?
 - c) When is it moving to the left?
 - d) When is its acceleration negative?
 - e) Draw a schematic diagram that shows the motion of the object.

13 Higher Order Derivatives

$$f'(x), f''(x), f'''(x), f^{iv}(x)$$
 $\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \frac{d^4y}{dx^4}$
 $y', y'', y''', y'''', y^{(4)}$
 $D_x(y), D_x^2(y), D_x^3(y) D_x^4(y)$

Note that
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$
 or $\frac{dy'}{dx}$