13B Higher Order Derivatives

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

$$\lim_{\max \Delta x_i \to 0} \sum_{1}^{n} f(x_i) \Delta x_i = \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Higher Order Derivatives

$$f'(x), f''(x), f'''(x), f^{iv}(x)$$

$$\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \frac{d^4y}{dx^4}$$

$$y', y'', y''', y'''', y^{(4)}$$

$$D_x(y), D_x^2(y), D_x^3(y) D_x^4(y)$$

Note that
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$
 or $\frac{dy'}{dx}$

Higher Order Derivatives

Derivative	f' notation	y' notation	D_{x} notation	Leibniz notation	
First	t(x)	y	D*(t)	dy	
Second	f.(x)	y"	$\mathcal{D}_{s}^{x}(t)$	dx dx	<u>d²(y)</u>
Third	t,,(x)	y""	$\mathcal{D}_{3}^{x}(t)$	dy dx	1.4 - 11
Fourth	₹(x)	y (4)	Dx(+)	d'y	the 4th
Fifth	tu(x)	A (2)	$D_2^{X}(t)$	9x2	power ≠y ^α is
n th	t _√ ,(x)	y (h)	(f), L	d dx	the fourth
	·) f - · · f(·) (0				l of y

EX 1 Find
$$f'''(x)$$
 for $f(x) = (3-5x)^5$

$$= -3290(3-2x)^{2}$$

$$f''(x) = -52(4)(3-2x)^{3}(-5) = 200(3-5x)^{3}$$

$$f'''(x) = -52(4)(3-5x)^{3}(-5) = 200(3-5x)^{3}$$

13B Higher Order Derivatives

Ex 2 Find
$$\frac{dy}{dx}$$
 for $y = sin\left(\frac{\pi}{x}\right)$.

$$\frac{\pi}{x} = \pi x^{-1}$$

$$y' = cos\left(\frac{\pi}{x}\right)\left(-\pi x^{-2}\right)$$

Ex 3 What is
$$D_x^5(3x^4-2x^3+x^2-4)$$
 ?

 $y^{(20)} = (-1)^{20} 20! \times^{-21} = 20! \times^{-21}$

the first derivative will be a 3rd degree poly.

"second
"thind
"fourth
"Constant

$$D_x^{s}(3x^{-2}x^{3}+x^{2}+y)=0$$

Ex 4 Find a formula for $D_x^{n}(\frac{1}{x})$

$$y = \frac{1}{x} = x^{-1}$$

$$y'' = -(-2)x^{-3} = 2x^{-3}$$

$$y''' = 2(-3)x^{-4} = -(6x^{-4}) = -3!x^{-4}$$

$$y''' = -3!(-4)x^{-5} = 4!x^{-5}$$

$$y''' = -4!(-5)x^{-6} = -5!x^{-6}$$

13B Higher Order Derivatives

We know
$$v(t) = s'(t)$$
 relacity = change in distance $a(t) = v'(t) = s''(t)$ change in time

- EX 5 An object moves along a horizontal coordinate line according to $s(t)=t^3-6t^2$. s is the directed distance from the origin (in ft.) t is the time (in seconds.)
 - a) What are v(t) and a(t)? $v(t) = s'(t) = 3t^2 12t$ ft/sec a(t) = v'(t) = 6t 12 ft/sec²
 - b) When is the object moving to the right? (V(+) > 0)
 - $3t^2-12t>0$ 3t(t-4)>0Sign -t 3t (t-4)>0When is it moving to the left?
 - when v(+)<0, when 04<4
 - d) When is its acceleration negative?

61-12<0 >> t<2 sec

e) Draw a schematic diagram that shows the motion of the object.

$$f'(x), f''(x), f'''(x), f^{iv}(x)$$

$$\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \frac{d^4y}{dx^4}$$

$$y', y''', y'''', y^{(4)}$$

$$D_x(y), D_x^2(y), D_x^3(y) D_x^4(y)$$

Note that
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$
 or $\frac{dy'}{dx}$