

Higher Order Derivatives

$$
\begin{aligned}
& f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x), f^{i v}(x) \\
& \frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \quad \frac{d^{3} y}{d x^{3}}, \quad \frac{d^{4} y}{d x^{4}} \\
& y^{\prime}, \quad y^{\prime \prime}, \quad y^{\prime \prime \prime}, \quad y^{(4)} \\
& D_{x}(y), \quad D_{x}^{2}(y), \quad D_{x}^{3}(y) \quad D_{x}^{4}(y) \\
& \text { Note that } \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right) \text { or } \frac{d y^{\prime}}{d x}
\end{aligned}
$$

Higher Order Derivatives

Derivative	f^{\prime} notation	$y_{\text {notation }}^{\prime}$	D_{x} notation	Leibniz notation
First	$f^{\prime}(x)$	y^{\prime}	$D_{x}(f)$	$\frac{d^{\prime} y}{d x}$
Second	$f^{\prime \prime \prime}(x)$	$y^{\prime \prime}$	$D_{x}^{2}(f)$	$\frac{d^{2} y}{d x^{2}}$

EX $1 \quad$ Find $f^{\prime \prime \prime}(x)$ for $f(x)=(3-5 x)^{5}$

$$
\begin{aligned}
f^{\prime}(x) & =5(3-5 x)^{4}(-5)=-25(3-5 x)^{4} \\
f^{\prime \prime}(x) & =-25(4)(3-5 x)^{3}(-5)=500(3-5 x)^{3} \\
f^{\prime \prime \prime}(x) & =500(3)(3-5 x)^{2}(-5) \\
& =-7500(3-5 x)^{2}
\end{aligned}
$$

Ex 2 Find $\frac{d y}{d x}$ for $y=\sin \left(\frac{\pi}{x}\right) . \quad \frac{\pi}{X}=\pi X^{-1}$

$$
y^{\prime}=\cos \left(\frac{\pi}{x}\right)\left(-\pi x^{-2}\right)
$$

Ex 3 What is $D_{x}^{5}\left(3 x^{4}-2 x^{3}+x^{2}-4\right)$?
the first derivative will be a $3^{\text {ed }}$ degree poly.

	second "	$"$	\cdots	$2^{\text {nd }}$
thin	$"$	$"$.	$1^{\text {st }}$

"fourth " \because " constant

$$
\Rightarrow D_{x}^{5}\left(3 x^{4}-2 x^{3}+x^{2}-4\right)=0
$$

Ex 4 Find a formula for $D_{x}^{n}\left(\frac{1}{x}\right)$.

$$
\begin{aligned}
& y=\frac{1}{x}=x^{-1} \\
& y^{\prime}=-x^{-2} \\
& y^{\prime \prime}=-(-2) x^{-3}=2 x^{-3} \\
& y^{\prime \prime \prime}=2(-3) x^{-4}=-6 x^{-4}=-3!x^{-4} \\
& y^{(4)}=-3!(-4) x^{-5}=4!x^{-5} \\
& y^{(5)}=4!(-5) x^{-6}=-5!x^{-6} \\
& y^{(20)}=(-1)^{20} 20!x^{-21}=20!x^{-21}
\end{aligned}
$$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
3!=3 \cdot 2 \cdot 1 \\
5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1
\end{array}\right. \\
& n!=n(n-1) \cdots \cdot 2 \cdot 1, n \in \mathbb{Z}^{+} \\
& \begin{array}{l|l}
n & D_{x}^{n}\left(\frac{1}{x}\right) \\
\hline 1 & -x^{-2}=-1!x^{-2} \\
2 & 2!x^{-3} \\
3 & -3!x^{-4} \\
4 & 4!x^{-5} \\
5 & -5!x^{-6} \\
\vdots & \\
n & (-1)^{n} n!x^{-(n+1)} \\
& =(-1)^{n} n!x^{-n-1}
\end{array}
\end{aligned}
$$

We know $\begin{aligned} v(t) & =s^{\prime}(t) \quad \text { velocity }=\frac{\text { change in dist. }}{\text { change in time }} \\ a(t) & =v^{\prime}(t)=s^{\prime \prime}(t)\end{aligned}$

EX 5 An object moves along a horizontal coordinate line according to $s(t)=t^{3}-6 t^{2}$. s is the directed distance from the origin (in ft.) t is the time (in seconds.)
a) What are $\mathrm{v}(\mathrm{t})$ and $\mathrm{a}(\mathrm{t})$?

$$
\begin{aligned}
& v(t)=s^{\prime}(t)=3 t^{2}-12 t \quad \mathrm{ft} / \mathrm{sec} \\
& a(t)=v^{\prime}(t)=6 t-12 \quad \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
$$

b) When is the object moving to the right? $\quad(v(t)>0)$

$$
\begin{array}{ll}
3 t^{2}-12 t>0 & \text { sign } \\
3 t(t-4)>0 & \text { line }
\end{array}
$$

c) When is it moving to the left?

$$
\Rightarrow v(t)>0 \text { when } t>4 \mathrm{sec}
$$

when $v(t)<0$, when $0<t<4$
d) When is its acceleration negative?

$$
\begin{gathered}
6 t-12<0 \\
6 t<12
\end{gathered} \quad \rightarrow t<2 \mathrm{sec}
$$

e) Draw a schematic diagram that shows the motion of the object.
change div ectus
 at +-4

$$
\begin{aligned}
s(4) & =4^{3}-6\left(4^{2}\right) \\
& =-32
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x), f^{i v}(x) \\
& \frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \quad \frac{d^{3} y}{d x^{3}}, \quad \frac{d^{4} y}{d x^{4}} \\
& y^{\prime}, \quad y^{\prime \prime}, \quad y^{\prime \prime \prime}, \quad y^{(4)} \\
& D_{x}(y), \quad D_{x}^{2}(y), \quad D_{x}^{3}(y) \quad D_{x}^{4}(y) \\
& \text { Note that } \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right) \text { or } \frac{d y^{\prime}}{d x}
\end{aligned}
$$

