

The Chain Rule

The Chain Rule

'douter' 'dinner'

The Chain Rule

$$
D_{x}(f(g(x)))=f^{\prime}(\S(x))\left(g^{\prime}(x)\right) \quad \text { or } \quad D_{x} y=\left(D_{u} y\right)\left(D_{x} u\right)
$$

Basically, we differentiate from the 'outside-in.' This is very useful if we need to differentiate something like $f(x)=3\left(x^{2}-2 x+1\right)^{80}$ and you really don't want to multiply it out.

EX 1 If $y=\left(3 x^{3}-4 x+5\right)^{10}$ find y^{\prime}

$$
y^{\prime}=10\left(3 x^{3}-4 x+5\right)^{9}\left(9 x^{2}-4\right)
$$

EX 2 If $y=\frac{4}{\left(2 x^{7}-6 x^{2}\right)^{5}} \quad$ find y^{\prime}

$$
\begin{aligned}
& \left(2 x^{7}-6 x^{2}\right)^{7} \\
y= & 4\left(2 x^{7}-6 x^{2}\right)^{-5} \\
y^{\prime}= & 4(-5)\left(2 x^{7}-6 x^{2}\right)^{-6}\left(14 x^{6}-12 x\right) \\
= & \frac{-20\left(14 x^{6}-12 x\right)}{\left(2 x^{7}-6 x^{2}\right)^{6}}
\end{aligned}
$$

12B Chain Rule

Ex 3 Find $f^{\prime}(x)$:
a) $f(x)=\sin ^{2} x=(\sin x)^{2}$

$$
\frac{\sin }{12}
$$

$$
f^{\prime}(x)=2(\sin x)(\cos x)
$$

b) $f(x)=\sin \left(x^{3}\right)$
(1) 13

$$
f^{\prime}(x)=\cos \left(x^{3}\right)\left(3 x^{2}\right)
$$

EX 3 (continued) Find $f^{\prime}(x)$:

$$
\begin{aligned}
& \text { c) } f(x)=\left(\frac{2 x+1}{x-5}\right)^{4} \quad\left(\text { not: } \frac{(2 x+1)^{4}}{(x-5)^{4}}\right) \\
& f^{\prime}(x)=4\left(\frac{2 x+1}{x-5}\right)^{3}\left(\frac{(x-5)(2)-(2 x+1)(1)}{(x-5)^{2}}\right)
\end{aligned}
$$

start w/ product rule

$$
\begin{aligned}
f^{\prime}(x)= & (2(\sin 4 x)(\cos 4 x)(4))\left(2 x^{5}-3\right)^{3} \\
& +(\sin (4 x))^{2}\left[3\left(2 x^{5}-3\right)^{2}\left(10 x^{4}\right)\right]
\end{aligned}
$$

We can think of the chain rule as $\quad \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
EX 4 Find $\frac{d y}{d x}$
a) $y=\left[\frac{\left(2 x^{2}+3\right)}{\sigma} \cos (x)\right]^{\prime}$
$y^{\prime}=\frac{d y}{d x}=4\left(\left(2 x^{2}+3\right) \cos x\right)^{3}\left[(4 x) \cos x+\left(2 x^{2}+3\right)(-\sin x)\right]$
b) $y=\left(-3 x+\frac{5}{x}\right)^{\prime} \quad D_{x}\left(\frac{5}{x}\right)=D_{x}\left(5 x^{-1}\right)$ $=-5 x^{-2}=\frac{-5}{x^{2}}$

$$
\frac{d y}{d x}=-4\left(-3 x+\frac{5}{x}\right)^{-5}\left(-3+\frac{-5}{x^{2}}\right)
$$

The Chain Rule

'douter' 'dinner'

