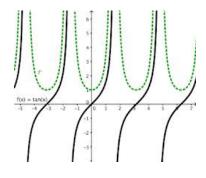

The derivative of $f(x) = \sin x$

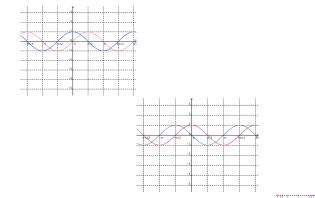

1		1	3↑	+	1	
			1			
			0			- 1
-3π/2	-π	-π/2	0	π/2	π	~
-3π/2	-π	-π/2	0	π/2	π	
-3π/2	-π	-π/2		π/2	π	
-3π/2	-π	-π/2		π/2	π	
-3π/2	-π	-π/2	1 2	π/2	π	
-3π/2	-π	-17/2		π/2	π	

Use the definition of the derivative to find $D_x(sin x)$.

The derivative of $f(x) = \cos x$

Here is a graph of $y = \tan x$ (black) and its derivative (green). Can you guess what it might be?

EX 1 Find y' for these functions.


a)
$$y = \sin^2 x$$

b)
$$y = \cot x$$

c)
$$y = \frac{x\cos x + \sin x}{x^2 + 1}$$

d)
$$y = \sin^2 x + \cos^2 x$$

EX 2 Find the equation of the tangent line to $y = \cot x$ at $x = \pi/4$

1			<u> </u>	.//
<u>/ \ / </u>	<u> </u>	И.		//
			/	
-3π/2	-11/2	°	n/2	101/2
				/
	11			