

Derivatives of
 Trigonometric Functions

11B Derivatives Trig
The derivative of $f(x)=\sin x$

Use the definition of the derivative to find $D_{x}(\sin x)$.

$$
\begin{aligned}
& D_{x}(\sin x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, f(x)-\sin x \\
&=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
&=\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\
&=\lim _{h \rightarrow 0} \frac{\sin x(\cos h-1)+\cos x \sin h}{h} \\
&=\lim _{h \rightarrow 0}\left[\frac{\sin x(\cosh -1)}{h}+\cos x\left(\frac{\sin h}{h}\right)\right] \\
&\left.\begin{array}{rl}
\frac{N_{\text {otc: }}}{\lim _{\theta \rightarrow 0}} \frac{\sin \theta}{\theta}=1 & =\sin x\left(\lim _{h \rightarrow 0}\left(\frac{\cos h-1}{h}\right)\right)+\cos x\left(\frac{\lim }{h \rightarrow \infty} \frac{\sin h}{h}\right) \\
\text { and } \\
\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta} \\
=0 & =0+\cos x \\
= & =\cos x
\end{array}\right)+\cos x(1) \\
&=0
\end{aligned}
$$

11B Derivatives Trig

The derivative of $f(x)=\cos x$

derivative

Here is a graph of $y=\tan x$ (black) and its derivative (green). Can you guess what its derivative might be?
 green curve

$$
y=\sec ^{2} x
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
D_{x}(\sin x)=\cos x \\
D_{x}(\cos x)=-\sin x \\
D_{x}(\tan x)=\sec ^{2} x \\
D_{x}(\cot x)=-\csc ^{2} x
\end{array}\right. \\
& D_{x}(\csc x)=-\csc x \cot x=\frac{1}{\cos ^{2} x}=\sec ^{2} x \\
& D_{x}(\sec x)=\sec x \tan x
\end{aligned}
$$

EX 1 Find y^{\prime} for these functions.
a)

$$
\begin{aligned}
y & =\sin ^{2} x=(\sin x)(\sin x) \\
y^{\prime} & =(\cos x)(\sin x)+\sin x(\cos x) \\
& =2 \sin x \cos x
\end{aligned}
$$

b)

$$
\begin{aligned}
y & =\cot x=\frac{\cos x}{\sin x} \\
y^{\prime} & =\frac{\sin x(-\sin x)-\cos x(\cos x)}{\sin ^{2} x} \\
y^{\prime} & =\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x} \\
y^{\prime} & =\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x} \\
& =\frac{-1}{\sin ^{2} x}=-\csc ^{2} x
\end{aligned}
$$

c)

$$
\begin{aligned}
& y=\frac{\frac{x \cos x+\sin x}{x^{2}+1}}{y^{\prime}=} \begin{array}{l}
\left(x^{2}+1\right)(1 \cdot \cos x+x(-\sin x)+\cos x)-(x \cos x+\sin x)(2 x) \\
\left(x^{2}+1\right)^{2} \\
y^{\prime}=\frac{\left(x^{2}+1\right)(2 \cos x-x \sin x)-2 x^{2} \cos x-2 x \sin x}{\left(x^{2}+1\right)^{2}}
\end{array} .=\frac{10}{2}
\end{aligned}
$$

d)

$$
\begin{aligned}
& y=\sin ^{2} x+\cos ^{2} x \\
& y=1 \\
& y^{\prime}=0
\end{aligned}
$$

EX 2 Find the equation of the tangent line to $y=\cot x$ at $x=\pi / 4$
(1) need pt
(1) $(\pi / 4,1) y=\cot (\pi / 4)$
(2) need slope
(3) plug into $y \cdot y_{1}=m\left(x-x_{1}\right)$
(2) $y^{\prime}=-\csc ^{2} x$

$$
\begin{aligned}
m & =-\csc ^{2}(\pi / 4) \\
& =\frac{-1}{\sin ^{2}(\pi / 4)}=\frac{-1}{(1 / \sqrt{2})^{2}}=\frac{-1}{1 / 2}=-2
\end{aligned}
$$

(3)

$$
\begin{aligned}
& y-1=-2(x-\pi / 4) \\
& y-1=-2 x+\pi / 2 \\
& y=-2 x+(\pi / 2+1)
\end{aligned}
$$

11B Derivatives Trig

$$
\begin{aligned}
& D_{x}(\sin x) \\
& =\cos x
\end{aligned}
$$

blue derivative curve red original in curve

