


$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{d}{dx} \int_{a}^{x} f(t) \ dt = f(x)$$

$$\lim_{\max \Delta x_i \to 0} \sum_{i=1}^{n} f(x_i) \Delta x_i = \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Rules For Finding Derivatives

$$\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^{2}}$$

$$=\frac{\log d \operatorname{hi} - \operatorname{hi} \cdot d \log d \operatorname{hi} - \operatorname{hi} \cdot d \operatorname{hi} - \operatorname{hi} - \operatorname{hi} \cdot d \operatorname{hi} - \operatorname{hi}$$

Constant Function Rule

Constant Function Rule

$$y = c$$
 (c fixed humber), then $y' = 0$
 $y = c$ (graphs into horizontal line, $y' = 0$ means

 $y = x$, then $y' = 1$

Constant Multiple Rule

$$f(x) = kg(x), k$$
 constant then $f'(x) = kg'(x)$

Sum & Difference Rule

POW	/FR	RUI	F
1 0 1 1	<u> </u>	IVOL	

		-	$f(x) = x^2$
n	$f(x)=x^n$		
D	f(x)=	f'/y)=0	$f'(x) = \lim_{h \to 0} f(x+h) - f(x)$
1	f(x)= ×	t,(x)=	= lin (x+h)2- x2
2	f(x)=X,	f1/2)=2x	h->0
3	f(x)=x	f(x)=3v2	= lin x+2xh+h2-xx
4	f(x)=x ³ f(x)=x ⁴	f%)=4x3	= lin x+2xh+h2x
•			- 0: K(2x+h) a: -
^	t(^ =^	۲۷) ۲	= lin K(2x+h) = lin 2x+h
	{(x)= ^X ,	+ (×)=η \ ———	=2x
	•	•	

(3)
$$n=3$$
, $f(x)=y^3$

$$f'(x)=\lim_{h\to 0} \frac{(x+h)^3-x^3}{h} = \lim_{h\to 0} \frac{x^2+3x^3h+3xh^2+h^2x^3}{h}$$

$$=\lim_{h\to 0} \frac{x^2+3xh+h^2}{h}$$

$$=\lim_{h\to 0} (3x^2+3xh+h^2)$$

$$=3x^2$$

Power Rule

n is any positive integer, $f(x)=x^n$ $f'(x)=nx^{n-1}$

EX 1 Find f'(x) if $f(x) = 3x^7 - 4x^6 + x^5 + 2x^3 - x^2 + 4$

$$f'(x) = D_{x} (3x^{2}) - D_{x} (4x^{4}) + D_{x}(x^{5}) + D_{x} (2x^{3})$$

$$= D_{x} (3x^{2}) - D_{x} (4x^{4}) + D_{x}(x^{5}) + D_{x}(x^{3})$$

$$= D_{x} (x^{2}) + D_{x} (4x^{4})$$

$$= D_{x} (x^{2}) + D_{x} (x^{5}) + 2D_{x} (x^{3})$$

$$= D_{x} (x^{2}) + D$$

$$= 3(7x^{5}) - 4(6x^{5}) + 5x^{4} + 2(3x^{2}) - 2x$$

$$= 21x^{6} - 24x^{5} + 5x^{4} + 6x^{2} - 2y$$

Product Rule

$$D_x(f(x)g(x)) = f(x)D_x[g(x)] + D_x[f(x)]g(x)$$

EX 2 Find
$$f'(x)$$
 if $f(x) = (2x^3-4x+1)(3x+5)$.

If f and g are differentiable, then $D_x(f(x)g(x)) = f(x)D_x[g(x)] + D_x[f(x)]g(x)$ Must $Use when differentiation

<math display="block">U_x(f(x)g(x)) = f(x)D_x[g(x)] + D_x[f(x)]g(x)$ Use when differentiationNote: use when differentiating for times the other the product of fors.

EX 2 Find f'(x) if $f(x) = (2x^3-4x+1)(3x+5)$.

of other for times

a) Use the product rule:

$$= 54x_3 + 30x_5 - 54x - 11$$

$$= 18x_3 + 30x_5 - 15x - 50 + 6x_3 - 15x + 3$$

$$+ (x) = (ex_5 - 4)(3x + 2) + (5x_3 - 4x + 1)(3)$$

$$+ (x) = (ex_5 - 4)(3x + 2) + (5x_3 - 4x + 1)(3)$$

b) Multiply out and use the power rule to check:

$$f(x) = 6x^{4} + 10x^{3} - 12x^{2} - 20x + 2x + 5$$

$$f(x) = 6x^{4} + 10x^{3} - 12x^{2} - 17x + 5$$

$$\Rightarrow f'(x) = 24x^{3} + 30x^{2} - 24x - 17$$

Quotient Rule

Let f and g be differentiable functions, $g(x) \neq 0$,

then
$$D_x \frac{f(x)}{g(x)} = \frac{g(x)D_x[f(x)] - f(x)D_x[g(x)]}{g^2(x)}$$
.

EX 3 Find f'(x) if
$$f(x) = \frac{2x^2 + 4x - 1}{3x - 2}$$
.

$$f_{1}(x) = \frac{(3^{x}-5)_{5}}{(3^{x}-5)(4^{x}+4)-(5^{x}+4^{x}-1)(3)}$$

EX 4
$$y = \frac{-3}{x} + \frac{2}{x^4 - 7x}$$
 Find $y'(x)$
 $y' = -3(-1)x^{-2} + \frac{2}{x^4 - 7x}$
 $(x^4 - 7x)(-2)(-2(4x^3 - 7))(-2(4x^3 - 7))(-2(4x^3 - 7))$

Note:

$$D_x(x^{-n}) = -nx^{-n-1}$$
 for n , a positive integer

$$D_{x}(x_{-n}) = D_{x}\left(\frac{x_{n-1}}{x_{n-1}}\right)$$

$$= x_{x}(0) - 1(\mu x_{n-1})$$

$$= x_{x}(0) - 1(\mu x_{n-1})$$

EX 5 Find
$$f'(x)$$
 if $f(x) = \frac{5x-4}{x^2+1}$ (quotient rule)
$$f'(x) = (x^2+1)(5) - (5x-4)(2x)$$

$$(x^2+1)^2$$

EX 6 Find
$$D_x(y)$$
 if $y = 3x(x^3 - 2x + 1) = 3x^4 - 6x^4 + 3x$

$$D_x(y) = y' = 12x^3 - 12x + 3$$

EX7 Find
$$\frac{dy}{dx}$$
 if $y = \frac{-3}{x^5} + \frac{2}{x} = -3x^{-5} + 2x^{-1}$

$$\frac{dy}{dx} = -3(-5)x^{-6} + 2(-1)x^{-2}$$

$$= 15x^{-6} - 2x^{-2} \text{ or } \frac{15}{x^{4}} - \frac{2}{x^{2}}$$

$$\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^{2}}$$

$$=\frac{\log d \operatorname{hi} - \operatorname{hi} \cdot d \log d \operatorname{hi} - \operatorname{hi} \cdot d \operatorname{hi} - \operatorname{hi} - \operatorname{hi} \cdot d \operatorname{hi} - \operatorname{hi} \cdot d \operatorname{hi} - \operatorname{hi$$