

Math 1090 ~ Business Algebra

Section 5.5 Loans and Amortization

Objectives:

- Create an amortization schedule for a loan.
- Determine the amount of a loan you can afford given certain conditions.
- Determine the amount of each monthly payment for a given number of years.

Amortization: An "installment loan" is a loan that is repaid by making all payments equal.
The bank is basically investing a lump sum of dollars and getting a periodic return which is exactly like PV of an ordinary annuity.
$R=S\left(\frac{r_{c}}{1-\left(1+r_{c}\right)^{-N}}\right)$ Amortization Formula notice this is
$\mathrm{S}=$ loan amount $\quad \mathrm{R}=$ payment amount formula rearranged to get R by itself!
Ex 1: When you graduate college, you buy a new car and can afford a monthly payment of $\$ 250 /$ month. If you get a special rate of 3.6% interest, compounded monthly, for 6 years, how much can you afford to borrow? $\quad n=12$

$$
\begin{gathered}
R=\$ 250, r=0.036, t=6 \text { yrs }, S=? \\
r_{c}=\frac{0.036}{12}=0.003, N=6(12)=72 \\
250=S\left(\frac{0.003}{1-1.003^{-72}}\right) \\
S=250\left(\frac{1-1.003^{-72}}{0.003}\right) \\
S \simeq \$ 16,167.01
\end{gathered}
$$

total payments:

$$
250(72)=\$ 18,000
$$

Ex 2: Alex buys a house for $\$ 200,000$. They put $\$ 15,000$ down and get a loan for the rest at 5.4% interest compounded monthly for 20 years. What will their payments be?

$$
\begin{aligned}
& S=\$ 185,000, r=0.054, n=12, t=20 \mathrm{yrs} \\
& r_{c}=\frac{0.054}{12}=0.0045, N=12(20)=240 \\
& R=185000\left(\frac{0.0045}{1-1.0045^{-240}}\right)
\end{aligned}
$$

$R \simeq \$ 1262.17$ total payments:
Amortization Schedule

$$
1262.17(240)=\$ 302,920.80
$$

A loan of $\$ 10,000$ with interest rate of 10% could be repaid in 5 equal annual payments.

\Rightarrow your very last payment will actually be $\$ 2638.00$ (to cover that leftover 3\$)
total payments:

$$
2637.97(5)=\$ 13,189.85
$$

Ex 3: A company that buys a piece of equipment
Loan Payoff Amount by borrowing $\$ 250,000$ for 10 years at 6% compounded monthly has monthly payments of \$2,775.51. $\quad t=10, r=0.06, n=12$

$$
\begin{aligned}
\text { a) } \begin{aligned}
& \text { Find the unpaid balance after } 1 \text { year.' } r_{c}=0.005 \\
& K=12 \quad N-K=108 \quad N=120 \\
& R=\$ 2775.5 \\
& S_{108}=2775.51\left(\frac{1-1.005}{0.005}\right) \\
& S_{108} \simeq \$ 231,181.73
\end{aligned}
\end{aligned}
$$

$$
R=\$ 2775.51 \mathrm{k}=\text { number of payments }
$$

$$
S_{108}=2775.51\left(1-1.005^{-108}\right) \quad \begin{aligned}
& \text { 2775. }
\end{aligned}
$$

b) During that first year, how much interest does
$N-k=$ number of payments the company pay?
"missing" from the loan.

$$
\begin{array}{r}
2775.51(12)=33,306.12 \text { (total payments } \\
\text { in |st ye ar) } \\
\Rightarrow 250,000-231,181.73 \geqslant 18,818.27
\end{array}
$$

(amt that went toward principal)

$$
\Rightarrow 33,306.12-18,818.27=\$ 14,487.85
$$

(this is the amt of $1^{\text {st }}$ year of payments that went toward interest)

