$$
A P Y=\left(1+\frac{r}{n}\right)^{n}-1
$$

Math 1090 ~ Business Algebra

Section 5.2 Simple and Compound Interest

Objectives:

- Differentiate between simple and compound interest.
- Solve problems involving simple and compound interest.
- Understand and calculate annual percentage yield (APY).

Simple and Compound Interest
Simple Interest (like arithmetic Compound Interest (Lila a geometric

- add same interest every period seq) - multiply by same rate every Seq)
- arithmetic sequence (grows $\begin{aligned} & \text { - period } \\ & \text { - geometric sequence (grows }\end{aligned}$
- $P=$ principal $=$ start value
- $P r=$ principal times interest rate

Ex 1: If $\$ 10,000$ is invested for four years at an annual rate of 8%, how much will the account be worth at the end of four years?
a) simple interest $\quad P=\$ 10,000$
b) compounded once a year

$$
\begin{aligned}
& S=P(1+r t) \quad t=4 \\
& S=0.08 \\
& S=10000(1+0.08(4)) \\
&=\$ 13,200
\end{aligned}
$$

$$
\begin{aligned}
S & =P\left(1+\frac{r}{n}\right)^{n t} \\
n & =1 \\
S & =P(1+r)^{t} \\
S & =10000(1+0.08)^{4} \\
& \simeq \$ 13,604.89
\end{aligned}
$$

Ex 2: What is an account worth in 8 years if we started with $\$ 3000$ and we got continuous compounding at a rate of 6% ?

$$
\begin{array}{ll}
S=P e^{r t} & P=3000 \\
S=3000 e^{0.06(8)} \simeq \$ 4848.22^{t} & =8
\end{array}
$$

$$
\begin{aligned}
& \text { Ex 3: If } \$ 1000 \text { is invested at } 5 \% \text { annual interest rate, compute these. } \\
& P=1000 \text { balance after } 5 \text { years } t=5 \text { how long to double investment }=2000 \\
& r=0.05 \\
& \text { simple interest } \\
& s=P(1+r t) \quad 2000=1000(1+0.05 t) \\
& S=1000(1+0.05(5)) \\
& 2=1+0.05 t \\
& 1=0.05 t \\
& t=20 \mathrm{ycs} \\
& \text { compound } \\
& \text { interest, } n=1 \\
& \text { compound } \\
& \text { interest, } n=12 \\
& \begin{aligned}
& S=1000\left(1+\frac{0.0 S}{12}\right)^{1(s)} \\
& \simeq \$ 1,283.36
\end{aligned} \\
& \text { compound } \\
& \text { continuously } S=1000 e^{0.05(5)} \\
& S=1000 e^{0.05(5)} \quad 2000=1000 e^{0.05 t} \\
& \simeq \$ 1284.03 \quad 2=e^{0.05 t} \\
& \ln 2=0.05 t \\
& t=\frac{\ln 2}{0.05}=\begin{array}{l}
13.86 \\
\text { yes }
\end{array}
\end{aligned}
$$

Ex 4: What amount must be invested now in order to have $\$ 1,000,000$ for retirement in 45 years if money is compounded quarterly at 9% ?

$$
\begin{array}{ll}
S=P\left(1+\frac{r}{n}\right)^{n t} & t=45 \text { yrs } \\
1000000=P\left(1+\frac{0.09}{4}\right)^{4(45)} & \begin{array}{l}
r=0.09 \\
\\
S=1,000,000 \\
1000000=P(1.0225)^{100}
\end{array} \\
P=? \\
P=\frac{1,000,000}{1.0225^{180} \simeq \$ 18,222.29}
\end{array}
$$

APY (Annual Percentage Yield)
Let $\mathrm{P}=\$ 100$ be invested at 8% interest compounded as given in (a) and (b). What is the account worth after one year?
a) quarterly $n=4$
$t=1$

$$
\begin{gathered}
S=P\left(1+\frac{r}{n}\right)^{n t \quad r=0.08} \quad P=100 \\
S=100\left(1+\frac{0.08}{4}\right)^{4(1)} \\
\simeq \$ 108.24 \\
\Rightarrow A P Y=8.247_{0} \\
\\
A P R=r=8 \%_{0}
\end{gathered}
$$

b) monthly $n=12$

$$
\begin{aligned}
& S=P\left(1+\frac{n}{n}\right)^{n t} \\
& S=100\left(1+\frac{0.08}{12}\right)^{12(1)} \\
& \simeq 108.30 \\
& \text { APY }=8.3 \% \\
& \text { APR }=r=8 \%
\end{aligned}
$$

$$
\begin{array}{ll}
A P Y=\left(1+\frac{r}{n}\right)^{n}-1 & \text { (periodic compounding) } \\
A P Y=e^{r}-1 & \text { (continuous compounding) }
\end{array}
$$

Ex 5: Which is a better investment deal?
a) 10% compounded annually $n=1, r=0.1$

$$
A P Y=\left(1+\frac{0.1}{1}\right)^{\prime}-1=0.1=1070
$$

b) 9.8% compounded quarterly $n=4, r=0.098$

$$
\begin{aligned}
& \text { 9.8\% compounded guarerery } n=4, r=0.098 \\
& \text { AP }=\left(1+\frac{0.098}{4}\right)^{4}-1=0.10166=10.16670 \text { dealt }
\end{aligned}
$$

c) 9.65% compounded continuously $r=0.0965$

$$
A P Y=e^{0.0965}-1 \simeq 0.10131=10.131 \%
$$

