

Vocabulary

Sequence: $\{a_n\}$ an ordered list of numbers that form a pattern. It's also a function with domain of natural numbers.

1

Arithmetic Sequence	Geometric Sequence
$n = 2, 3, \dots, d \neq 0$	$n = 2, 3, \dots, d \neq 0$
$a_n = a_{n-1} + d$ given a_1	$a_n = da_{n-1}$ given a_1
(Add the same number to get	(Multiply by the same number to
each of the next terms.)	get each of the next terms.)

* These formulas are <u>recursive</u>. (They depend on previous terms.)

a_1 given	a_1 given
$a_2 =$	$a_2 =$
$a_3 =$	$a_3 =$
$a_4 =$	$a_4 =$
$a_5 =$	$a_5 =$
$a_n =$	$a_n =$

* These formulas are iterative. (They don't depend on previous terms.)

Ex 1: Classify as arithmetic or geometric and give the next three terms of each sequence.

a) 10, 7, 4, 1, ... b) 2, -6, 18, -54, ...

Ex 2: Find a formula for the nth term of each of these.

a) an arithmetic sequence where	b) a geometric sequence where
$a_1 = 2$ and $d = -3$	$a_1 = -10$ and $d = 2$

Ex 3: Given $a_1 = 2$ and $a_8 = 23$, find the 50th term of this arithmetic sequence.

Ex 4: Given $a_1 = \frac{3}{2}$ and $a_6 = \frac{3}{64}$, find the 20th term of the geometric sequence.

 Arithmetic Sequence Sum
 Geometric Sequence Sum

 $S_{12} = 2+5+8+11+14+17+20$ $S_n = a_1 + a_2 + \dots + a_n = ?$

 +23+26+29+32+35= ?

Ex 5: Find the sum of the first *n* terms of each of these.

a) 1, 10, 19, 28, ... n = 100 b) 3, 6, 12, ... n = 10